997 resultados para Climate change – Brazil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is inevitable and will continue into the next century. Since the agricultural sector in Sri Lanka is one of the most vulnerable to climate change, a thorough understanding of climate transition is critical for formulating effective adaptation strategies. This paper provides an overview of the status of climate change and adaptation in the agricultural sector in Sri Lanka. The review clearly indicates that climate change is taking place in Sri Lanka in terms of rainfall variability and an increase in climate extremes and warming. A number of planned and reactive adaptation responses stemming from policy and farm-level decisions are reported. These adaptation efforts were fragmented and lacked a coherent connection to the national development policies and strategies. Research efforts are needed to develop and identify adaptation approaches and practices that are feasible for smallholder farmers, particularly in the dry zone where paddy and other food crops are predominately cultivated. To achieve the envisaged growth in the agricultural sector, rigorous efforts are necessary to mainstream climate change adaptation into national development policies and ensure that they are implemented at national, regional and local levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farming freshwater prawns with fish in rice fields is widespread in coastal regions of southwest Bangladesh because of favourable resources and ecological conditions. This article provides an overview of an ecosystem-based approach to integrated prawn-fish-rice farming in southwest Bangladesh. The practice of prawn and fish farming in rice fields is a form of integrated aquaculture-agriculture, which provides a wide range of social, economic and environmental benefits. Integrated prawn-fish-rice farming plays an important role in the economy of Bangladesh, earning foreign exchange and increasing food production. However, this unique farming system in coastal Bangladesh is particularly vulnerable to climatechange. We suggest that community-based adaptation strategies must be developed to cope with the challenges. We propose that integrated prawn-fish-rice farming could be relocated from the coastal region to less vulnerable upland areas, but caution that this will require appropriate adaptation strategies and an enabling institutional environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 19502000 and 2020.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency of extreme weather. Projections of climate impacts on feed crops show that there will likely be opportunities for increased productivity as well as considerable threats to crop productivity in different parts of the world over the next 20 to 50 years. On balance, we anticipate substantial risks to the volume, volatility, and quality of animal feed supply chains from climate change. Adaptation strategies and investment informed by high quality research at the interface of crop and animal science will be needed, both to respond to climate change and to meet the increasing demand for animal products expected over the coming decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the first global-scale multi-sectoral regional assessment of the magnitude and uncertainty in the impacts of climate change avoided by emissions policies. The analysis suggests that the most stringent emissions policy considered here which gives a 50% chance of remaining below a 2oC temperature rise target - reduces impacts by 20-65% by 2100 relative to a ‘business-as-usual’ pathway (A1B) which reaches 4oC, and can delay impacts by several decades. Effects vary between sector and region, and there are few noticeable effects of mitigation policy by 2030. The impacts avoided by 2100 are more strongly influenced by the date and level at which emissions peak than the rate of decline of emissions, with an earlier and lower emissions peak avoiding more impacts. The estimated proportion of impacts avoided at the global scale is relatively robust despite uncertainty in the spatial pattern of climate change, but the absolute amount of avoided impacts is considerably more variable and therefore uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in the impacts of climate change is ever increasing. This is particularly true of the water sector where understanding potential changes in the occurrence of both floods and droughts is important for strategic planning. Climate variability has been shown to have a significant impact on UK climate and accounting for this in future climate cahgne projections is essential to fully anticipate potential future impacts. In this paper a new resampling methodology is developed which includes the variability of both baseline and future precipitation. The resampling methodology is applied to 13 CMIP3 climate models for the 2080s, resulting in an ensemble of monthly precipitation change factors. The change factors are applied to the Eden catchment in eastern Scotland with analysis undertaken for the sensitivity of future river flows to the changes in precipitation. Climate variability is shown to influence the magnitude and direction of change of both precipitation and in turn river flow, which are not apparent without the use of the resampling methodology. The transformation of precipitation changes to river flow changes display a degree of non-linearity due to the catchment's role in buffering the response. The resampling methodology developed in this paper provides a new technique for creating climate change scenarios which incorporate the important issue of climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the greatest challenges we face in the twenty-first century is to sustainably feed nine to ten billion people by 2050 while at the same time reducing environmental impact (e.g. greenhouse gas (GHG) emissions, biodiversity loss, land use change and loss of ecosystem services). To this end, food security must be delivered. According to the United Nations definition, ‘food security exists when all people, at all times, have physical and economic access to sufficient,safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life’. At the same time as delivering food security, we must also reduce the environmental impact of food production. Future climate change will make an impact upon food production. On the other hand, agriculture contributes up to about 30% of the anthropogenic GHG emissions that drive climate change. The aim of this review is to outline some of the likely impacts of climate change on agriculture, the mitigation measures available within agriculture to reduce GHG emissions and outlines the very significant challenge of feeding nine to ten billion people sustainably under a future climate, with reduced emissions of GHG. Each challenge is in itself enormous, requiring solutions that co-deliver on all aspects. We conclude that the status quo is not an option, and tinkering with the current production systems is unlikely to deliver the food and ecosystems services we need in the future; radical changes in production and consumption are likely to be required over the coming decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate models consistently predict a strengthened BrewerDobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistryclimate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the BrewerDobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A version of the Canadian Middle Atmosphere Model that is coupled to an ocean is used to investigate the separate effects of climate change and ozone depletion on the dynamics of the Southern Hemisphere (SH) stratosphere. This is achieved by performing three sets of simulations extending from 1960 to 2099: 1) greenhouse gases (GHGs) fixed at 1960 levels and ozone depleting substances (ODSs) varying in time, 2) ODSs fixed at 1960 levels and GHGs varying in time, and 3) both GHGs and ODSs varying in time. The response of various dynamical quantities to theGHGand ODS forcings is shown to be additive; that is, trends computed from the sum of the first two simulations are equal to trends from the third. Additivity is shown to hold for the zonal mean zonal wind and temperature, the mass flux into and out of the stratosphere, and the latitudinally averaged wave drag in SH spring and summer, as well as for final warming dates. Ozone depletion and recovery causes seasonal changes in lower-stratosphere mass flux, with reduced polar downwelling in the past followed by increased downwelling in the future in SH spring, and the reverse in SH summer. These seasonal changes are attributed to changes in wave drag caused by ozone-induced changes in the zonal mean zonal winds. Climate change, on the other hand, causes a steady decrease in wave drag during SH spring, which delays the breakdown of the vortex, resulting in increased wave drag in summer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paul Crutzen (2006) has suggested a research initiative to consider whether it would be feasible to artificially enhance the albedo of the planet Earth to counteract greenhouse warming. The enhancement of albedo would be achieved by intentionally injecting sulfur into the stratosphere. The rational for proposing the experiment is the observed cooling of the atmosphere following the recent major volcanic eruptions by El Chichon in 1984 and Mount Pinatubo in 1991 (Hansen et al., 1992). Although I am principally not against a research initiative to study such a potential experiment, I do have important reservations concerning its general feasibility. And its potential feasibility, I believe, must be the key motivation for embarking on such a study. Here I will bring up three major issues, which must be more thoroughly understood before any geo-engineering of climate could be considered, if at all. The three issues are (i) the lack of accuracy in climate prediction, (ii) the huge difference in timescale between the effect of greenhouse gases and the effect of aerosols and (iii) serious environmental problems which may be caused by high carbon dioxide concentration irrespective of the warming of the climate.