995 resultados para Cl- ions
Resumo:
The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm (-2). Our results show that nonsequential ionization from an Ar+ target is strongly suppressed compared with that from the corresponding neutral target. We have also observed for the first time the strong field ionization of high lying target metastable levels in the Ar+ beam.
Resumo:
Polar photodissociation of a set of bromo-chloro-alkanes in the vicinity of the Br 3d core edge has been observed for the first time. It is shown that negative photoion spectroscopy is a powerful tool for investigating the various decay mechanisms of core-excited molecules. Analysis of these results indicates that the observed polar photodissociation arises from two competing spectator Auger decay processes in which the molecule can dissociate either before or after the core hole relaxation.
Resumo:
Polar photodissociation of CFnCl4-n (n=0-2) has been studied using synchrotron radiation within the energy range 195-217 eV. The first observations of negative photoion fragments from these molecules after core excitation are reported. In addition to observing a number of previously known resonances two additional resonant states, just above the Cl 2p ionization limit, are observed and play an important role in the polar photodissociation process. The difficulties in identifying these above threshold spin-split features using negative photoion spectroscopy are discussed.
Resumo:
Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.
Resumo:
In this review we consider those processes in condensed matter that involve the irreversible flow of energy between electrons and nuclei that follows from a system being taken out of equilibrium. We survey some of the more important experimental phenomena associated with these processes, followed by a number of theoretical techniques for studying them. The techniques considered are those that can be applied to systems containing many nonequivalent atoms. They include both perturbative approaches (Fermi's Golden Rule and non-equilibrium Green's functions) and molecular dynamics based (the Ehrenfest approximation, surface hopping, semi-classical Gaussian wavefunction methods and correlated electron-ion dynamics). These methods are described and characterized, with indications of their relative merits.
Resumo:
A voluminous literature exists on the analysis of water-soluble ions extracted from gypsum crusts and patinas formed on building surfaces. However, less data is available on the intermediate dust layer and the important role its complex matrix and constituents play in crust/patina formation. To address this issue, surface dust samples were collected from two buildings in the city of Budapest. Substrate properties, different pollution levels and environmental variations were considered by collecting samples from a city centre granite building exposed to intense traffic conditions and from an oolitic limestone church situated in a pedestrian area outside and high above the main pollution zone. Selective extraction examines both water-soluble ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3- SO42-) and selected elements (Fe, Mn, Zn, Cu, Cr, Pb, Ni) from the water-soluble, exchangeable/carbonate, amorphous Mn, amorphous Fe/Mn, crystalline Fe/Mn, organic and residual phases, their mobility and potential to catalyse heterogeneous surface reactions. Salt weathering processes are highlighted by high concentrations of water-soluble Ca2+, Na+, Cl- and SO42-- at both sites. Manganese, Zn and Cu and to a lesser extent Pb and Ni, are very mobile in the city centre dust, where 30%, 54%, 38%, 11% and 11% of their totals are bound by the water-soluble phase, respectively. Church dust shows a sharp contrast for Mn, Zn, Cu and Pb with only 3%, 1%, 12% and 3% of their totals being bound by the water-soluble phase respectively. This may be due to (a) different environmental conditions at the church e.g. lower humidity (b) continuous replenishment of salts under intensive city centre traffic conditions (c) enrichment in oxidisable organic carbon by a factor of 4.5 and a tenfold increase in acidity in the city centre dust.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
KLL dielectronic recombination resonances, where a free electron is captured into the L shell and at the same time a K shell electron is excited into the L shell, have been measured for open shell iodine ions by measuring the detected yield of escaping ions of various charge states and modeling the charge balance in an electron beam ion trap. In the modeling, the escape from the trap and multiple charge exchange were considered. Extracted ions were used to measure the charge balance in the trap. The different charge states were clearly separated, which along with the correction for artifacts connected with ion escape and multiple charge exchange made the open shell highly charged ion measurements of this type possible for the first time. From the measured spectra resonant strengths were obtained. The results were 4.27(39)x10(-19) cm(2) eV, 2.91(26)x10(-19) cm(2) eV, 2.39(22)x10(-19) cm(2) eV, 1.49(14)x10(-19) cm(2) eV and 7.64(76)x10(-20) cm(2) eV for the iodine ions from He-like to C-like, respectively.
Resumo:
Few-cycle laser pulses are used to "pump and probe" image the vibrational wavepacket dynamics of a HD+ molecular ion. The quantum dephasing and revival structure of the wavepacket are mapped experimentally with time-resolved photodissociation imaging. The motion of the molecule is simulated using a quantum-mechanical model predicting the observed structure. The coherence of the wavepacket is controlled by varying the duration of the intense laser pulses. By means of a Fourier transform analysis both the periodicity and relative population of the vibrational states of the excited molecular ion have been characterized.
Resumo:
The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.
Resumo:
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.
State selective electron capture by state prepared beams of multiply charged ions in atomic hydrogen