900 resultados para Chunk-based information diffusion
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
INTRODUCTION: Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS: We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS: Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION: A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').
Resumo:
Information and communication technologies pose accessibility problems to people with disabilities because its design fails to take into account their communication and usability requirements. The impossibility to access the services provided by these technologies creates a situation of exclusion that reduces the self-suficiency of disabled individuals and causes social isolation, which in turn diminishes their overall quality of life. Considering the importance of these technologies and services in our society, we have developed a pictogram-based Instant Messaging service for individuals with cognitive disabilities who have reading and writing problems. Along the paper we introduce and discuss the User Centred Design methodology that we have used to develop and evaluate the pictogram-based Instant Messaging service and client with individuals with cognitive disabilities taking into account their communication and usability requirements. From the results obtained in the evaluation process we can state that individuals with cognitive disabilities have been able to use the pictogram-based Instant Messaging service and client to communicate with their relatives and acquaintances, thus serving as a tool to help reducing their social and digital exclusion situation.
Resumo:
Earthquakes occurring around the world each year cause thousands ofdeaths, millions of dollars in damage to infrastructure, and incalculablehuman suffering. In recent years, satellite technology has been asignificant boon to response efforts following an earthquake and itsafter-effects by providing mobile communications between response teamsand remote sensing of damaged areas to disaster management organizations.In 2007, an international team of students and professionals assembledduring theInternational Space University’s Summer Session Program in Beijing, Chinato examine how satellite and ground-based technology could be betterintegrated to provide an optimised response in the event of an earthquake.The resulting Technology Resources for Earthquake MOnitoring and Response(TREMOR) proposal describes an integrative prototype response system thatwill implement mobile satellite communication hubs providing telephone anddata links between response teams, onsite telemedicine consultation foremergency first-responders, and satellite navigation systems that willlocate and track emergency vehicles and guide search-and-rescue crews. Aprototype earthquake simulation system is also proposed, integratinghistorical data, earthquake precursor data, and local geomatics andinfrastructure information to predict the damage that could occur in theevent of an earthquake. The backbone of these proposals is a comprehensiveeducation and training program to help individuals, communities andgovernments prepare in advance. The TREMOR team recommends thecoordination of these efforts through a centralised, non-governmentalorganization.
Resumo:
Over thirty years ago, Leamer (1983) - among many others - expressed doubts about the quality and usefulness of empirical analyses for the economic profession by stating that "hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly anyone takes anyone else's data analyses seriously" (p.37). Improvements in data quality, more robust estimation methods and the evolution of better research designs seem to make that assertion no longer justifiable (see Angrist and Pischke (2010) for a recent response to Leamer's essay). The economic profes- sion and policy makers alike often rely on empirical evidence as a means to investigate policy relevant questions. The approach of using scientifically rigorous and systematic evidence to identify policies and programs that are capable of improving policy-relevant outcomes is known under the increasingly popular notion of evidence-based policy. Evidence-based economic policy often relies on randomized or quasi-natural experiments in order to identify causal effects of policies. These can require relatively strong assumptions or raise concerns of external validity. In the context of this thesis, potential concerns are for example endogeneity of policy reforms with respect to the business cycle in the first chapter, the trade-off between precision and bias in the regression-discontinuity setting in chapter 2 or non-representativeness of the sample due to self-selection in chapter 3. While the identification strategies are very useful to gain insights into the causal effects of specific policy questions, transforming the evidence into concrete policy conclusions can be challenging. Policy develop- ment should therefore rely on the systematic evidence of a whole body of research on a specific policy question rather than on a single analysis. In this sense, this thesis cannot and should not be viewed as a comprehensive analysis of specific policy issues but rather as a first step towards a better understanding of certain aspects of a policy question. The thesis applies new and innovative identification strategies to policy-relevant and topical questions in the fields of labor economics and behavioral environmental economics. Each chapter relies on a different identification strategy. In the first chapter, we employ a difference- in-differences approach to exploit the quasi-experimental change in the entitlement of the max- imum unemployment benefit duration to identify the medium-run effects of reduced benefit durations on post-unemployment outcomes. Shortening benefit duration carries a double- dividend: It generates fiscal benefits without deteriorating the quality of job-matches. On the contrary, shortened benefit durations improve medium-run earnings and employment possibly through containing the negative effects of skill depreciation or stigmatization. While the first chapter provides only indirect evidence on the underlying behavioral channels, in the second chapter I develop a novel approach that allows to learn about the relative impor- tance of the two key margins of job search - reservation wage choice and search effort. In the framework of a standard non-stationary job search model, I show how the exit rate from un- employment can be decomposed in a way that is informative on reservation wage movements over the unemployment spell. The empirical analysis relies on a sharp discontinuity in unem- ployment benefit entitlement, which can be exploited in a regression-discontinuity approach to identify the effects of extended benefit durations on unemployment and survivor functions. I find evidence that calls for an important role of reservation wage choices for job search be- havior. This can have direct implications for the optimal design of unemployment insurance policies. The third chapter - while thematically detached from the other chapters - addresses one of the major policy challenges of the 21st century: climate change and resource consumption. Many governments have recently put energy efficiency on top of their agendas. While pricing instru- ments aimed at regulating the energy demand have often been found to be short-lived and difficult to enforce politically, the focus of energy conservation programs has shifted towards behavioral approaches - such as provision of information or social norm feedback. The third chapter describes a randomized controlled field experiment in which we discuss the effective- ness of different types of feedback on residential electricity consumption. We find that detailed and real-time feedback caused persistent electricity reductions on the order of 3 to 5 % of daily electricity consumption. Also social norm information can generate substantial electricity sav- ings when designed appropriately. The findings suggest that behavioral approaches constitute effective and relatively cheap way of improving residential energy-efficiency.
Resumo:
Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.
Resumo:
BACKGROUND: Frailty is a relatively new geriatric concept referring to an increased vulnerability to stressors. Various definitions have been proposed, as well as a range of multidimensional instruments for its measurement. More recently, a frailty phenotype that predicts a range of adverse outcomes has been described. Understanding frailty is a particular challenge both from a clinical and a public health perspective because it may be a reversible precursor of functional dependence. The Lausanne cohort Lc65+ is a longitudinal study specifically designed to investigate the manifestations of frailty from its first signs in the youngest old, identify medical and psychosocial determinants, and describe its evolution and related outcomes. METHODS/DESIGN: The Lc65+ cohort was launched in 2004 with the random selection of 3054 eligible individuals aged 65 to 70 (birth year 1934-1938) in the non-institutionalized population of Lausanne (Switzerland). The baseline data collection was completed among 1422 participants in 2004-2005 through questionnaires, examination and performance tests. It comprised a wide range of medical and psychosocial dimensions, including a life course history of adverse events. Outcomes measures comprise subjective health, limitations in activities of daily living, mobility impairments, development of medical conditions or chronic health problems, falls, institutionalization, health services utilization, and death. Two additional random samples of 65-70 years old subjects will be surveyed in 2009 (birth year 1939-1943) and in 2014 (birth year 1944-1948). DISCUSSION: The Lc65+ study focuses on the sequence "Determinants --> Components --> Consequences" of frailty. It currently provides information on health in the youngest old and will allow comparisons to be made between the profiles of aging individuals born before, during and at the end of the Second World War.
Resumo:
This paper describes a failure alert system and a methodology for content reuse in a new instructional design system called InterMediActor (IMA). IMA provides an environment for instructional content design, production and reuse, and for students’ evaluation based in content specification through a hierarchical structure of competences. The student assessment process and information extraction process for content reuse are explained.
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
It is well known that multiple-input multiple-output (MIMO) techniques can bring numerous benefits, such as higher spectral efficiency, to point-to-point wireless links. More recently, there has been interest in extending MIMO concepts tomultiuser wireless systems. Our focus in this paper is on network MIMO, a family of techniques whereby each end user in a wireless access network is served through several access points within its range of influence. By tightly coordinating the transmission and reception of signals at multiple access points, network MIMO can transcend the limits on spectral efficiency imposed by cochannel interference. Taking prior information-theoretic analyses of networkMIMO to the next level, we quantify the spectral efficiency gains obtainable under realistic propagation and operational conditions in a typical indoor deployment. Our study relies on detailed simulations and, for specificity, is conducted largely within the physical-layer framework of the IEEE 802.16e Mobile WiMAX system. Furthermore,to facilitate the coordination between access points, we assume that a high-capacity local area network, such as Gigabit Ethernet,connects all the access points. Our results confirm that network MIMO stands to provide a multiple-fold increase in spectralefficiency under these conditions.
Resumo:
In recent years, the large deployment of mobile devices has led to a massiveincrease in the volume of records of where people have been and when they were there.The analysis of these spatio-temporal data can supply high-level human behaviorinformation valuable to urban planners, local authorities, and designer of location-basedservices. In this paper, we describe our approach to collect and analyze the history ofphysical presence of tourists from the digital footprints they publicly disclose on the web.Our work takes place in the Province of Florence in Italy, where the insights on thevisitors’ flows and on the nationalities of the tourists who do not sleep in town has beenlimited to information from survey-based hotel and museums frequentation. In fact, mostlocal authorities in the world must face this dearth of data on tourist dynamics. In thiscase study, we used a corpus of geographically referenced photos taken in the provinceby 4280 photographers over a period of 2 years. Based on the disclosure of the locationof the photos, we design geovisualizations to reveal the tourist concentration and spatiotemporalflows. Our initial results provide insights on the density of tourists, the points ofinterests they visit as well as the most common trajectories they follow.
Resumo:
Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system.