907 resultados para Chromatography, Affinity
Resumo:
This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L-1 tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L-1 tetraborate, pH 9.3, containing 0.050 mol-L-1 sodium dodecyly sulfate (SIDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 mug/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 mug.L-1 and 11 mug.L-1 for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.
Resumo:
A competitive enzyme-linked immunosorbent assay (ELISA) method for carbaryl quantitation in crop extracts was validated by liquid chromatography (LC) with diode array detection (DAD). For this purpose, six crops (banana, carrot, green bean, orange, peach and potato) were chosen for recovery and reproducibility studies. The general sample preparation included extraction with methanol followed by liquid-liquid partitioning and clean-up on Celite-charcoal adsorbent column of the vegetable extracts. ELISA samples consisted of a diluted LC extract in assay phosphate buffer (pH 7.5). The potential effect of methanol in these samples was evaluated. It was observed that a maximum content of 10% methanol present in the assay buffer could be tolerated without expressive losses in the ELISA performance. Under these conditions, a IC50 similar to 1.48 mu g l(-1) was obtained. A minimum matrix effect with a 1:50 dilution of the methanolic extracts in assay buffer was noticed, except for green bean samples that inhibited completely the assay. For the vegetable extracts, the ELISA sensitivities varied from 3.9 to 5.7 mu g l(-1), and good recoveries (82-96%) with R.S.D.s ranging from 5.7 to 12.1% were found. An excellent correlation between the LC-DAD and ELISA techniques was obtained. The confirmation of the carbaryl in less concentrated samples was achieved by LC-mass spectrometry interfaced with atmospheric pressure chemical ionisation. The [M + H](+)= 202 and [M + H-57](+)=145 ions, equivalent to the protonated molecular and l-naphthol ions, respectively, were used to carbaryl identification in these samples. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The use of furanocoumarins, which are photosensitizing compounds, combined with exposure to UV-A radiation is a common treatment for vitiligo, psoriasis, and a number of other skin diseases. Although furanocoumarins plus UV-A treatment is highly effective, several studies have shown that exposure to high doses increases the risk to development of cutaneus carcinoma. Several Dorstenia species are used in folk medicine, mainly against skin diseases, because of the presence of biologically active compounds. We present here analysis of the chemical composition of furanocoumarins from infusion and decoction of Carapia (Dorstenia species), which is used in Brazil against several diseases. We have employed high-performance liquid chromatography (HPLC) procedures for the quantitative determination of psoralen, bergapten, and isopimpinellin. The contents of furanocoumarins revealed an insignificant difference between infusion and decoction. Dorstenia tubicina and D. asaroides contained psoralen and bergapten only in the rhizomes, whereas D. vitifolia shows solely isopimpinellin in both rhizomes and aerial parts.
Resumo:
The authors have studied the chromatographic behavior of parenteral preparations for pediatric use containing inorganic cations. After separation and identification by thin-layer chromatography, Mn2+, Zn2+, and Cu2+ were analyzed by a method based on reaction with an appropriate reagent and extraction with an organic solvent which yielded elution and preconcentration, resulting in an appropriate solution for colorimetric quantitation. Cr3+ cation was determined by atomic absorption spectrophotometry after appropriate chromatographic separation, using microcrystalline cellulose (adsorbent) and an acetone:water:hydrochloric acid mixture (80:5:8) as the mobile phase.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. (syn. T. aphrodisiaca) belongs to the family of Turneraceae and is an aromatic plant growing wild in the subtropical regions of America and Africa. It is widely used in the traditional medicine as e.g. anti-cough, diuretic, and aphrodisiac agent. This work presents a 3 min chromatographic analysis using low-pressure (LP) gas chromatography (GC)-ion-trap (IT) mass spectrometry (MS). The combination of a deactivated 0.6 m x 0.10 mm i.d., restrictor with a wide-bore CP-Wax 52 capillary column (10 m x 0.53 mm i.d., 1 mum) reduces the analysis time by a factor of 3-7 in comparison to the use of a conventional narrow bore column. Chromatographic conditions have been optimized to achieve the fastest separation with the highest signal/noise ratio in MS detection. These results allow fast and reliable quality control of the essential oil to be achieved. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Buffalo erythrocytes contain one isozyme of hexokinase that apparently lacks microheterogeneity as shown by chromatographic properties. A single protein band was detected by means of Western blotting using an antibody raised in rabbits against homogeneous rat brain hexokinase I. The native protein has a molecular weight of 200,000 +/- 2880 by gel filtration. Partial purification of erythrocyte hexokinase by a combination of several procedures, including affinity chromatography, which was previously applied successfully to the purifica tion of other mammalian type I hexokinases, produced a partially purified enzyme that showed several contami nants after SDS-polyacrylamide gel electrophoresis. The affinity of buffalo erythrocyte hexokinase for glucose (K-m = 0.012 +/- 0.001 mM) is lower than most other mammal hexokinases type I. It phosphorylates other sugars, with considerably higher K-m values. This isozyme is able to use MgATP but does not use MgGTP, MgCTP or MgUTP. We used inhibition patterns, obtained with products to elucidate enzyme sequential mechanisms. Our results are clearly in agreement with a random sequential mechanism and in disagreement with an ordered sequential mechanism with either glucose or ATP as the obligatory first substrates. The ADP inhibition was of mixed type with both ATP and glucose as substrates. (C) 1997 Elsevier B.V.
Resumo:
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymetkylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical defector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol /LiClO4(aq) at a concentration of 1.0 x 10(-3) mol L-1 (80:20 v/v) and a flow-rate of 1.1 mL min(-1). The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL(-1), with detection limits of 1.7 to 2.0 ng mL(-1) and quantification limits from 5.0 to 6.2 ng mL(-1), using injection volume of 20 mu L. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.
Resumo:
Nobiletin (NOB) and tangeretin (TAN), two of the main polymethoxylated flavones (PMFs) in citrus, influence a number of key biological pathways in mammalian cells. Although the impacts of NOB and TAN on glucose homeostasis and cholesterol regulation have been investigated in human clinical trials, much information is still lacking about the metabolism and oral bioavailability of these compounds in animals. In this study, NOB and TAN were administered to rats by gavage and intraperitoneal (ip) injection, and the blood serum concentrations of these compounds and their main metabolites were monitored by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). In addition to the administered compounds, two metabolites of TAN and eight metabolites of NOB were detected and measured over 24 h. With identical oral doses, nearly 10-fold higher absorption of NOB occurred compared to TAN. For both compounds, maximum levels of glucuronidated metabolites occurred in the blood serum at later time points (similar to 5-8 h) compared to the earlier T(max) a values for NOB and TAN. In most cases the glucuronides occurred at substantially higher concentrations than the aglycone metabolites. Low levels of NOB and TAN and their metabolites were detectable in rat blood serum even at 24 h after treatment.
Resumo:
Sodium monofluoroacetate (NAFAc) has been widely used for vertebrate pest control, such as rabbits in Australia. However NAFAc is extremely toxic to all vertebrates and its use is restricted. Although this compound is stringently restricted, the occurrence of accidental and homicidal poisoning is no ever-present possibility.The method developed in this work shows the applicability of SPE with alumina cartridges for the extraction of NAFAc from serum samples. The method is efficient with recoveries of at least 96.8% from spiked serum. The samples were subsequently derivatized with dicyclohexylcabodiimide (DCC), using 2,4-dichloroaniline (DCA), to make the product volatile for GC analysis.