927 resultados para Choral Repertoire
Resumo:
The recent interest in using Buckminsterfullerene (fullerene) derivatives in biological systems raises the possibility of their assay by immunological procedures. This, in turn, leads to the question of the ability of these unprecedented polygonal structures, made up solely of carbon atoms, to induce the production of specific antibodies. Immunization of mice with a C60 fullerene derivative conjugated to bovine thyroglobulin yielded a population of fullerene-specific antibodies of the IgG isotype, showing that the immune repertoire was diverse enough to recognize and process fullerenes as protein conjugates. The population of antibodies included a subpopulation that crossreacted with a C70 fullerene as determined by immune precipitation and ELISA procedures. These assays were made possible by the synthesis of water-soluble fullerene derivatives, including bovine and rabbit serum albumin conjugates and derivatives of trilysine and pentalysine, all of which were characterized as to the extent of substitution and their UV-Vis spectra. Possible interactions of fullerenes with the combining sites of IgG are discussed based on the physical chemistry of fullerenes and previously described protein-fullerene interactions. They remain to be confirmed by the isolation of mAbs for x-ray crystallographic studies.
Resumo:
In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM1gj, from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells (“germline-joined”). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H1gj in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H1gj chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM1gj. Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.
RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12
Resumo:
RegulonDB is a database on mechanisms of transcription regulation and operon organization in Escherichia coli K-12. The current version has considerably increased numbers of regulatory elements such as promoters, binding sites and terminators. The complete repertoire of known and predicted DNA-binding transcriptional regulators can be considered to be included in this version. The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters. A new set of operon predictions has been incorporated. The relational design has been modified accordingly. Furthermore, a major improvement is a graphic display enabling browsing of the database with a Java-based graphic user interface with three zoom-levels connected to properties of each chromosomal element. The purpose of these modifications is to make RegulonDB a useful tool and control set for transcriptome experiments. RegulonDB can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/
Resumo:
Candida albicans is a diploid fungus that has become a medically important opportunistic pathogen in immunocompromised individuals. We have sequenced the C. albicans genome to 10.4-fold coverage and performed a comparative genomic analysis between C. albicans and Saccharomyces cerevisiae with the objective of assessing whether Candida possesses a genetic repertoire that could support a complete sexual cycle. Analyzing over 500 genes important for sexual differentiation in S. cerevisiae, we find many homologues of genes that are implicated in the initiation of meiosis, chromosome recombination, and the formation of synaptonemal complexes. However, others are striking in their absence. C. albicans seems to have homologues of all of the elements of a functional pheromone response pathway involved in mating in S. cerevisiae but lacks many homologues of S. cerevisiae genes for meiosis. Other meiotic gene homologues in organisms ranging from filamentous fungi to Drosophila melanogaster and Caenorhabditis elegans were also found in the C. albicans genome, suggesting potential alternative mechanisms of genetic exchange.
Resumo:
V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.
Resumo:
Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.
Resumo:
Computational neuroscience has contributed significantly to our understanding of higher brain function by combining experimental neurobiology, psychophysics, modeling, and mathematical analysis. This article reviews recent advances in a key area: neural coding and information processing. It is shown that synapses are capable of supporting computations based on highly structured temporal codes. Such codes could provide a substrate for unambiguous representations of complex stimuli and be used to solve difficult cognitive tasks, such as the binding problem. Unsupervised learning rules could generate the circuitry required for precise temporal codes. Together, these results indicate that neural systems perform a rich repertoire of computations based on action potential timing.
Resumo:
The intercistronic region between the maturation and coat-protein genes of RNA phage MS2 contains important regulatory and structural information. The sequence participates in two adjacent stem-loop structures, one of which, the coat-initiator hairpin, controls coat-gene translation and is thus under strong selection pressure. We have removed 19 out of the 23 nucleotides constituting the intercistronic region, thereby destroying the capacity of the phage to build the two hairpins. The deletion lowered coat-protein yield more than 1000-fold, and the titer of the infectious clone carrying the deletion dropped 10 orders of magnitude as compared with the wild type. Two types of revertants were recovered. One had, in two steps, recruited 18 new nucleotides that served to rebuild the two hairpins and the lost Shine-Dalgarno sequence. The other type had deleted an additional six nucleotides, which allowed the reconstruction of the Shine-Dalgarno sequence and the initiator hairpin, albeit by sacrificing the remnants of the other stem-loop. The results visualize the immense genetic repertoire created by, what appears as, random RNA recombination. It would seem that in this genetic ensemble every possible new RNA combination is represented.
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.
Resumo:
We have used a PCR-based technology to study the V beta 5 and V beta 17 repertoire of T-cell populations in HLA-DR2 multiple sclerosis (MS) patients. We have found that the five MS DR2 patients studied present, at the moment of diagnosis and prior to any treatment, a marked expansion of a CD4+ T-cell population bearing V beta 5-J beta 1.4 beta chains. The sequences of the complementarity-determining region 3 of the expanded T cells are highly homologous. One shares structural features with that of the T cells infiltrating the central nervous system and of myelin basic protein-reactive T cells found in HLA-DR2 MS patients. An homologous sequence was not detectable in MS patients expressing DR alleles other than DR2. However, it is detectable but not expanded in healthy DR2 individuals. The possible mechanisms leading to its in vivo proliferation at the onset of MS are discussed.
Resumo:
The class I major histocompatibility complex (MHC) glycoprotein HLA-B27 binds short peptides containing arginine at peptide position 2 (P2). The HLA-B27/peptide complex is recognized by T cells both as part of the development of the repertoire of T cells in the cellular immune system and during activation of cytotoxic T cells. Based on the three-dimensional structure of HLA-B27, we have synthesized a ligand with an aziridine-containing side chain designed to mimic arginine and to bind covalently in the arginine-specific P2 pocket of HLA-B27. Using tryptic digestion followed by mass spectrometry and amino acid sequencing, the aziridine-containing ligand is shown to alkylate specifically cysteine 67 of HLA-B27. Neither free cysteine in solution nor an exposed cysteine on a class II MHC molecule can be alkylated, showing that specific recognition between the anchor side-chain pocket of an MHC class I protein and the designed ligand (propinquity) is necessary to induce the selective covalent reaction with the MHC class I molecule.
Resumo:
The study of the origin and pathogenetic relevance of the oligoclonal antibodies present in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients has been hampered by a lack of specific ligands. We recently reported a general strategy, based on phage-displayed random peptide libraries, to identify ligands for disease-specific antibodies even in the absence of any information on the nature of the pathologic antigen. With this procedure, we identified several peptides specifically recognized by antibodies present in the CSF of MS patients. Using these peptides as reagents, we demonstrated that they mimic different natural epitopes and react with antibodies enriched in the CSF of MS patients. Antibodies recognizing the selected peptides are commonly found with equal frequency in the sera of MS patients and of normal individuals. In contrast, the repertoire of CSF antibodies appears to be individual-specific and is probably the result of a nonspecific immunodysregulation rather than a stereotyped response to a single antigen/agent.
Resumo:
The search for novel leads is a critical step in the drug discovery process. Computational approaches to identify new lead molecules have focused on discovering complete ligands by evaluating the binding affinity of a large number of candidates, a task of considerable complexity. A new computational method is introduced in this work based on the premise that the primary molecular recognition event in the protein binding site may be accomplished by small core fragments that serve as molecular anchors, providing a structurally stable platform that can be subsequently tailored into complete ligands. To fulfill its role, we show that an effective molecular anchor must meet both the thermodynamic requirement of relative energetic stability of a single binding mode and its consistent kinetic accessibility, which may be measured by the structural consensus of multiple docking simulations. From a large number of candidates, this technique is able to identify known core fragments responsible for primary recognition by the FK506 binding protein (FKBP-12), along with a diverse repertoire of novel molecular cores. By contrast, absolute energetic criteria for selecting molecular anchors are found to be promiscuous. A relationship between a minimum frustration principle of binding energy landscapes and receptor-specific molecular anchors in their role as "recognition nuclei" is established, thereby unraveling a mechanism of lead discovery and providing a practical route to receptor-biased computational combinatorial chemistry.
Resumo:
It has been suggested that recombination and shuffling between exons has been a key feature in the evolution of proteins. We propose that this strategy could also be used for the artificial evolution of proteins in bacteria. As a first step, we illustrate the use of a self-splicing group I intron with inserted lox-Cre recombination site to assemble a very large combinatorial repertoire (> 10(11) members) of peptides from two different exons. Each exon comprised a repertoire of 10 random amino acids residues; after splicing, the repertoires were joined together through a central five-residue spacer to give a combinatorial repertoire of 25-residue peptides. The repertoire was displayed on filamentous bacteriophage by fusion to the pIII phage coat protein and selected by binding to several proteins, including beta-glucuronidase. One of the peptides selected against beta-glucuronidase was chemically synthesized and shown to inhibit the enzymatic activity (inhibition constant: 17 nM); by further exon shuffling, an improved inhibitor was isolated (inhibition constant: 7 nM). Not only does this approach provide the means for making very large peptide repertoires, but we anticipate that by introducing constraints in the sequences of the peptides and of the linker, it may be possible to evolve small folded peptides and proteins.