974 resultados para Chemical elements
Resumo:
Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.
Resumo:
We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.
Resumo:
This research investigates the symbiotic relationship between composition and improvisation and the notion of improvisation itself. With a specific interest in developing, extending and experimenting with the relationship of improvisation within predetermined structures, the creative work component of this research involved composing six new works with varying approaches for The Andrea Keller Quartet and guest improvisers, for performance on a National Australian tour. This is documented in the CD recording Galumphing Round the Nation - Collaborations Tour 2009. The exegesis component is intended to run alongside the creative work and discusses the central issues surrounding improvisation in an ensemble context and the subject of composing for improvisers. Specifically, it questions the notion that when music emphasises a higher ratio of spontaneous to pre-determined elements, and is exposed to the many variables of a performance context, particularly through its incorporation of visitant improvisers, the resultant music should potentially be measurably altered with each performance. This practice-led research demonstrates the effect of concepts such as individuality, variability within context, and the interactive qualities of contemporary jazz ensemble music. Through the analysis and comparison of the treatment of the six pieces over thirteen performances with varying personnel, this exegesis proposes that, despite the expected potential for spontaneity in contemporary jazz music, the presence of established patterns, the desire for familiarity and the intuitive tendency towards accepted protocols ensure that the music which emerges is not as mutable as initially anticipated.
Resumo:
The effective implementation of such an ISO 9001 Quality Management System (QMS) in construction companies requires a proper and full implementation of the system to allow companies to improve the way they operate, by this means increasing profitability and market share, producing innovative and sustainable construction products, or improving employee and customer satisfaction. In light of this, this paper discusses the current status of QMS implementation, particularly related to the twenty elements of ISO 9001 within the grade 7 (G-7) category of Indonesian construction companies. A survey was conducted involving 403 respondents from 77 companies, to solicit an evaluation of the current implementation levels of the ISO 9001 elements. The survey findings indicated that for a large percentage of the sector surveyed they had ‘not so fully implemented’ the elements. Scrutiny of the data had also indicated elements that are ‘minimally implemented’, whilst none of the elements fell in the category of ‘fully implemented’. Based on these findings, it is suggested that the G-7 contractors may need to fully commit to practicing control of customer-supplied product and statistical techniques in order to enhance an effective implementation of ISO 9001 elements for ensuring better quality performance. These two elements are recognized as the least implemented of the quality elements.
Resumo:
Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.