973 resultados para Chemical Shift Imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1998 Spanish reform of the Personal Income Tax eliminated the 15% deduction for private medical expenditures including payments on private health insurance (PHI) policies. To avoid an undesirable increase in the demand for publicly funded health care, tax incentives to buy PHI were not completely removed but basically shifted from individual to group employer-paid policies. In a unique fiscal experiment, at the same time that the tax relief for individually purchased policies was abolished, the government provided for tax allowances on policies taken out through employment. Using a bivariate probit model on data from National Health Surveys, we estimate the impact of said reform on the demand for PHI and the changes occurred within it. Our findings suggest that the total probability of buying PHI was not significantly affected. Indeed, the fall in the demand for individual policies (by 10% between 1997 and 2001) was offset by an increase in the demand for group employer-paid ones, so that the overall size of the market remained virtually unchanged. We also briefly discuss the welfare effects on the state budget, the industry and society at large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory disease of the airways that involves many cell types, amongst which mast cells are known to be important. Adenosine, a potent bronchoconstricting agent, exerts its ability to modulate adenosine receptors of mast cells thereby potentiating derived mediator release, histamine being one of the first mediators to be released. The heterogeneity of sources of mast cells and the lack of highly potent ligands selective for the different adenosine receptor subtypes have been important hurdles in this area of research. In the present study we describe compound C0036E08, a novel ligand that has high affinity (pK(i) 8.46) for adenosine A(2B) receptors, being 9 times, 1412 times and 3090 times more selective for A(2B) receptors than for A(1), A(2A) and A(3) receptors, respectively. Compound C0036E08 showed antagonist activity at recombinant and native adenosine receptors, and it was able to fully block NECA-induced histamine release in freshly isolated mast cells from human bronchoalveolar fluid. C0036E08 has been shown to be a valuable tool for the identification of adenosine A(2B) receptors as the adenosine receptors responsible for the NECA-induced response in human mast cells. Considering the increasing interest of A(2B) receptors as a therapeutic target in asthma, this chemical tool might provide a base for the development of new anti-asthmatic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ La protéine kinase cyciine-cdc2p (Cdk) joue un rôle fondamental dans la progression du cycle cellulaire dans la levure de fission Schizosaccharomyces pombe. Nous avons étudié le rôle de cdc2p dans la régulation de la cascade de septation ou SIN (septation initiation network) en mitose et en méiose. Le SIN contrôle l'initiation de la cytokinèse à la fin de la mitose, et est supposé être négativement régulé par cdc2p. Nous avons mutagénéisé le site actif de cdc2p afin qu'il puisse lier un analogue de l'ATP (PP1) qui agit comme inhibiteur. Cet analogue ne peut pas lier la kinase de type sauvage. Cette approche dite «chemical genetics» permet une meilleure résolution temporelle comparée à l'approche classique utilisant les mutants sensibles à une température élevée. Nous avons montré que ce mutant cdc2-as (analogue sensitive) est fonctionnel et que, in vitro, l'activité kinase est inhibée en présence de l'analogue. Les cellules portant cette mutation, contrairement aux cellules de type sauvage s'arrêtent de manière irréversible soit en G2 soit en G1 et G2, suivant la concentration de l'inhibiteur. L'inactivation de cdc2p-as dans des cellules arrêtées en métaphase conduit au recrutement asymétrique des protéines du SIN sur le pôle du fuseau mitotique et au recrutement des composants du SIN, ainsi que de la ß-(1,3)glucan synthase à l'anneau contractile. De plus, nos résultats montrent que l'orthologue de la phosphatase cdc14p dans S. pombe, fip1p/clp1p, joue un rôle dans la régulation de la localisation des protéines du SIN suite à l'inactivation de cdc2p. Finalement, l'activité de cdc2p est requise pour maintenir la polo-like kinase plo1p sur les pôles du fuseau mitotique dans les premiers stages de la mitose. C'est pourquoi nous concluons que l'inactivation de cdc2p est suffisante pour activer le SIN et promouvoir la cytokinèse. Dans une étude séparée, nous avons caractérisé des potentiellement nouveaux composants ou régulateurs du SIN qui ont été isolés dans deux criblages génétiques visant à isoler des mutants atténuants la signalisation du SIN. Summary : The cyclin dependent protein kinase (Cdk) cdc2p plays a central role in the cell cycle progression of fission yeast Schizosaccharomyces pombe. We have studied the role of cdc2p in regulating the septation initiation network (SIN) in mitosis and meiosis. The SIN regulates the initiation of cytokinesis at the end of mitosis and is thought to be inhibited by cdc2p. We have mutated the active site of cdc2p to permit binding of an inhibitory ATP analogue (PP1), which is unable to bind unmodified kinases. This "chemical genetic" approach provides a much higher temporal resolution than it can be achieved with classical temperature-sensitive mutants. We demonstrate that cdc2-as (analogue sensitive) is functional and that addition of PP1 inhibits cdc2p kinase activity in vitro. Cells carrying the cdc2-as allele, but not cdc2+, undergo reversible cell cycle arrest following addition of PP1 either in G2, or at both major commitment points in the cell cycle (G1 and G2), depending upon the concentration of PP1. Inactivation of cdc2p-as in cells arrested in early mitosis promotes both the asymmetric recruitment of SIN proteins to the spindle pole bodies (SPBs), and the recruitment of the most downstream SIN components and ß-(1,3)-glucan synthase to the contractile ring. Furthermore, our results indicate that the S. pombe orthologue of Cdc14p, flp1p/clp1p, plays a role in regulating the relocalisation of SIN proteins following inactivation of cdc2p, and that cdc2p activity is required to retain the polo like kinase plot p on the SPBs in early mitosis. Thus, we conclude that inactivation of cdc2p is sufficient to activate the SIN and to promote cytokinesis. In a separate study, we have initially characterised potential novel components or regulators of the SIN pathway identified by two genetic screens for mutants attenuating SIN signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The first pathogenetic step in multiple myeloma is the emergence of a limited number of clonal plasma cells, clinically known as monoclonal gammopathy of undetermined significance (MGUS). Patients with MGUS do not have symptoms or end-organ damage but they do have a 1% annual risk of progression to multiple myeloma or related malignant disorders. With progression of MGUS to multiple myeloma, complex genetic events occur in the neoplastic plasma cell. Karyotyping and fluorescence in-situ hybridization (FISH) were shown to be of prognostic value in patients with multiple myeloma. Tc-sestamibi imaging reflects myeloma disease activity in bone marrow with very high sensitivity and specificity predicting disease evolution. This study was undertaken to evaluate the role of Tc-sestamibi imaging and cytogenetic analysis in prognosis prediction of MGUS and multiple myeloma. METHODS: We enrolled 30 consecutive patients with a confirmed diagnosis of multiple myeloma or MGUS. Bone marrow biopsy and biochemical staging according to the International Staging System (ISS) were performed in all cases. Karyotype analysis and FISH were performed in 11 of 12 patients with MGUS and in 17 of 18 patients with multiple myeloma having adequate metaphases. RESULTS: The karyotype was abnormal in four of 11 MGUS and in six of 17 multiple myeloma. Abnormalities of chromosome 13 were present in one case of MGUS and in six cases of multiple myeloma whereas the involvement of immunoglobulin was observed in one case of multiple myeloma. An abnormal FISH panel was found in four MGUS and nine multiple myeloma patients. All patients with MGUS showed a normal MIBI scan (score 0). Among patients with multiple myeloma only three, all with ISS stage I, showed a normal scan while a positive scan was obtained in others (score range, 1-7). The MIBI uptake was strongly related to the bone marrow plasma cell infiltration and to cytogenetic abnormalities. Particularly, a MIBI uptake score above 5 identified patients with poor prognosis encompassing all stage III multiple myeloma and three of seven stage II multiple myeloma. On the other hand all stage I and II patients having a MIBI score less than 5 showed a good prognosis. CONCLUSION: Both cytogenetic analysis and a MIBI scan add no relevant prognostic information to the ISS in patients with stage I and III multiple myeloma. The MIBI scan was of prognostic value in stage II multiple myeloma patients. Additionally, MIBI imaging may be useful to guide bone marrow biopsy in order to obtain adequate samples for cytogenetic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128-256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation.