1000 resultados para Cerro-negro Formation
Resumo:
Através de um estudo de caso amazônico, o artigo propõe analisar como as orientações do Estado brasileiro, dizendo respeito ao caráter pluriétnico da sociedade, são elaboradas a nível local. Pois, os grupos sociais são agora incentivados a dar relevo a certas práticas culturais enquanto símbolos de identidades especificas. Quais são então os lugares atribuídos às genealogias concorrentes, doravante minoritárias? Como são ritualizadas e encenadas as diferenças culturais, étnicas e religiosas? Essas questões serão discutidas para uma vila amapaense que, através das suas festas, reivindica uma dupla ou talvez mesmo uma tripla herança: "portuguesa" com a festa católica de São Tiago, "negra" com a dança do marabaixo, e "índia" com a dança do sairê - esta última expressando atualmente um desejo, ainda não concretizado, de reativação.
Resumo:
Julkaisussa: L'Atlas de la mer, ou monde aquaticque
Resumo:
Julkaisussa: L'Atlas de la mer, ou monde aquaticque
Resumo:
We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
Karyological characteristics, i.e., diploid number, chromosome morphology and nucleolus organizer regions (NORs), biochemical characteristics, i.e., electrophoretic analysis of blood hemoglobin and the tissue enzymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), and phosphoglucose isomerase (PGI), and physiological characteristics, i.e., relative concentration of hemoglobin and intraerythrocytic concentrations of organic phosphates were analyzed for the species Callophysus macropterus collected from Marchantaria Island (white water system - Solimões River) and Anavilhanas Archipelago (black water system - Negro River). Karyological and biochemical data did not reveal significant differences between specimens collected at the two sites. However, the relative distribution of hemoglobin bands I and III (I = 16.33 ± 1.05 and III = 37.20 ± 1.32 for Marchantaria specimens and I = 6.33 ± 1.32 and III = 48.05 ± 1.55 for Anavilhanas specimens) and levels of intraerythrocytic GTP (1.32 ± 0.16 and 2.76 ± 0.18 for Marchantaria and Anavilhanas specimens, respectively), but not ATP or total phosphate, were significantly different, indicating a physiological adaptation to the environmental conditions of these habitats. It is suggested that C. macropterus specimens from the two collecting sites belong to a single population, and that they adjusted some physiological characteristics to adapt to local environmental conditions.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
Leech neurons in culture have provided novel insights into the steps in the formation of neurite outgrowth patterns, target recognition and synapse formation. Identified adult neurons from the central nervous system of the leech can be removed individually and plated in culture under well-controlled conditions, where they retain their characteristic physiological properties, grow neurites and form specific chemical or electrical synapses. Different identified neurons develop distinctive outgrowth patterns that depend on their identities and on the molecular composition of the substrate. On native substrates, the patterns displayed by these neurons reproduce characteristics from the adult or the developing neurons. In addition, the substrate may induce selective directed growth between pairs of neurons that normally make contact in the ganglion. Upon contact, pairs of cultured leech neurons form chemical or electrical synapses, or both types depending on the neuronal identities. Anterograde and retrograde signals during membrane contact and synapse formation modify the distribution of synaptic terminals, calcium currents, and responses to 5-hydroxytryptamine.
Resumo:
We evaluated the effects of infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) on the formation and expression of memory for inhibitory avoidance. Adult male Wistar rats (215-300 g) were implanted under thionembutal anesthesia (30 mg/kg, ip) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Bilateral infusions of AP5 (5.0 µg) were given 10 min prior to training, immediately after training, or 10 min prior to testing in a step-down inhibitory avoidance task (0.3 mA footshock, 24-h interval between training and the retention test session). Both pre- and post-training infusions of AP5 blocked retention test performance. When given prior to the test, AP5 did not affect retention. AP5 did not affect training performance, and a control experiment showed that the impairing effects were not due to alterations in footshock sensitivity. The results suggest that NMDA receptor activation in the BLA is involved in the formation, but not the expression, of memory for inhibitory avoidance in rats. However, the results do not necessarily imply that the role of NMDA receptors in the BLA is to mediate long-term storage of fear-motivated memory within the amygdala.
Resumo:
Adrenocorticotrophin (ACTH) is the major regulatory hormone of steroid synthesis and secretion by adrenocortical cells. The actions of ACTH are mediated by its specific membrane receptor (ACTH-R). The human ACTH-R gene was recently cloned, allowing systematic determination of its sequence, expression and function in adrenal tumorigenesis. The presence of oncogenic mutations of the ACTH-R gene in adrenocortical tumors has been reported. Direct sequencing of the entire coding region of the ACTH-R gene of sporadic adrenocortical adenomas and carcinomas did not reveal constitutive activating mutations, indicating that this mechanism is not frequent in human adrenocortical tumorigenesis. Recent studies demonstrated allelic loss of the ACTH-R gene in a subset of sporadic adrenocortical tumors using a PstI polymorphism located in the promoter region of the ACTH-R gene. Loss of heterozygosity of the ACTH-R was analyzed in 20 informative patients with a variety of benign and malignant adrenocortical tumors. Three of them showed loss of heterozygosity of the ACTH-R gene. In addition, Northern blot experiments demonstrated reduced expression of ACTH-R mRNA in these three tumors with loss of heterozygosity, suggesting the functional significance of this finding at the transcriptional level. Deletion of the ACTH-R gene seems to be involved in a subset of human adrenocortical tumors, contributing to cellular dedifferentiation.
Resumo:
The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.
Resumo:
Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.
Resumo:
Gastric antral dysmotility has been implicated in the pathogenesis of indomethacin-induced gastric damage, but the relationship between gastric motor abnormalities and mucosal lesions has not been extensively studied. We investigated whether changes in gastric tone and gastric retention correlate with mucosal lesions and neutrophil migration in indomethacin-induced gastric damage in rats. Indomethacin, either 5 or 20 mg/kg (INDO-5 and INDO-20), was instilled into the stomach, and then gastric damage, neutrophil migration, gastric tone and gastric retention were assessed 1 or 3 h later. Gastric damage was calculated as the sum of the lengths of all mucosal lesions, and neutrophil migration was measured by assaying myeloperoxidase activity. Gastric tone was determined by a plethysmometric method, and gastric retention of either saline or Sustacal® was evaluated by a scintigraphic method. Gastric damage was detectable 3 h after either INDO-5 or INDO-20, but not after 1 h. Neutrophil migration was significantly higher 3 h after INDO-20 as compared with INDO-5 or control group, but not after 1 h. Values of gastric tone 1 and 3 h after either INDO-5 (1 h = 1.73 ± 0.07 ml; 3 h = 1.87 ± 0.03 ml) or INDO-20 (1 h = 1.70 ± 0.02 ml; 3 h = 1.79 ± 0.03 ml) were significantly lower than in controls (1 h = 1.48 ± 0.05 ml; 3 h = 1.60 ± 0.06 ml). Gastric retention of saline was higher 1 h after INDO-5 (58.9 ± 3.3%) or INDO-20 (56.1 ± 3.1%) compared to control (45.5 ± 1.7%), but not after 3 h. There were no differences concerning gastric retention of Sustacal® between the various groups. Indomethacin induced decreased gastric tone and delayed gastric emptying, which precede mucosal lesion and neutrophil infiltration. These results indicate that there is no relationship between these gastric motor abnormalities and mucosal lesion in indomethacin-induced gastropathy.
Resumo:
Tavallisten hapetusmenetelmien sijasta kehittyneitä hapetusmenetelmiä (AOP) on kehitetty yhä enemmän, jotta hapetusprosessista tulisi kannattavampi, tehokkaampi, ympäristöystävällisempi ja sitä voitaisiin hyödyntää laajalti eri paikoissa. Uusi teknologia, joka käyttää otsonia ja hydroksyyliradikaalia sähköimpulssien kanssa, on yksi mahdollinen tehokkaampi vedenkäsittelymentelmä. Kyseistä menetelmää kutsutaa pulsed corona discharge (PCD) -menetelmäksi, joka käyttää prosessissa muodostuvia otsonia ja hydroksyyliradikaalia hapettavina tekijöinä. Tässä työssä tutkittiin nitraatin muodostumista vedessä, kun vettä käsiteltiin PCD-laitteessa ja, kun oksalaatti- ja formaatti-ioneja oli sekoittuneina veteen. Nitraatteja muodostuu PCD–laitteessa veteen, kun ilman typpi reagoi hapettimina toimivien otsonin ja hydroksyyliradikaalin kanssa. Aiemmissa tutkimuksissa nitraatin muodostumisen on todistettu parantuvan, kun karboksyylihapot muurahais- ja oksaalihappo ovat sekoittuneina veteen. Tässä tutkimuksessa tarkoituksena oli tutkia, miten formaatti- ja oksalaatti-ionien, joiden pitoisuudet olivat 0 ppm, 50 ppm ja 100 ppm, läsnäolo vedessä vaikuttaa nitraatin muodostumiseen. PCD-kokeista saadut näytteet analysoitiin ionikromatografilla. Kyseisessä tutkimuksessa nitraatin muodostuminen oli samansuuruista jokaisessa kokeessa hapetusajan kasvaessa samalla, kun otettujen näytteiden pH-arvot laskivat. Tuloksena voitiin pitää sitä, ettei formaatti- tai oksalaatti-ioneilla ollut vaikutusta nitraatti-ionien muodostumiseen.
Resumo:
The objective of the present study was to describe, for the first time in Brazil, the use by a non-ophthalmologist of a community-based marginal rotation procedure by a posterior approach in the indigenous population from the Upper Rio Negro basin. Seventy-three upper eyelids of 46 Indians (11 males and 35 females) with cicatricial upper eyelid entropion and trichiasis were operated in the Indian communities using a marginal rotational procedure by a posterior approach by a non-ophthalmologist physician who had general surgery experience but only an extremely short period (one week) of ophthalmic training. Subjects were reevaluated 6 months after surgery. Results were classified according to the presence and location of residual trichiasis and symptoms were assessed according to a three-level subjective scale (better, worse or no change). Fifty-six eyelids (76.7%) were free from trichiasis, whereas residual trichiasis was observed in 17 eyelids (23.3%) of 10 subjects. In these cases, trichiasis was either lateral or medial to the central portion of the lid. Of these 10 patients, only 4 reported that the surgery did not improve the irritative symptoms. We conclude that marginal rotation by a posterior approach is an effective and simple procedure with few complications, even when performed by non-specialists. Due to its simplicity the posterior approach is an excellent option for community-based upper eyelid entropion surgery.