958 resultados para Cell Debris Particle Size


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20-50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration IC50]: 0.5 mu M) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 mu M). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by similar to 23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (similar to 1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (similar to 8 %) and net primary productivity (similar to 3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, semisolid manufacturing has emerged as an attractive option for near net shape forming of components with aluminum alloys. In this class of processes, the key to success lies mainly in the understanding of rheological behavior of the semi-solid slurry in the temperature range between liquidus and solidus. The present study focuses on the non-Newtonian flow behavior of the pseudo plastic slurry of Al-7Si-0.3Mg alloy for a wide shear range using a high-temperature Searle-type rheometer. The rheological behavior of the slurry is studied with respect to relevant process variables and microstructural features such as shear rate, shear duration, temperature history, primary particle size, shape, and their distribution. The experiments performed are isothermal tests, continuous cooling tests, shear jump tests, and shear time tests. The continuous cooling experiments are aimed toward studying the viscosity and shear stress evolution within the slurry matrix with increasing solid fraction at a constant shear rate. Three different cooling rates are considered and their effect on flow behavior of the slurry was studied under iso-shear condition. Descending shear jump experiments are performed to understand the viscous instability of the slurry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The room-temperature synthesis of mono-dispersed gold nanoparticles, by the reduction of chlorauric acid (HAuCl4) with tannic acid as the reducing and stabilizing agent, is carried out in a microchannel. The microchannel is fabricated with one soft wall, so that there is a spontaneous transition to turbulence, and thereby enhanced mixing, when the flow Reynolds number increases beyond a critical value. The objective of the study is to examine whether the nanoparticle size and polydispersity can be modified by enhancing the mixing in the microchannel device. The flow rates are varied in order to study nanoparticle formation both in laminar flow and in the chaotic flow after transition, and the molar ratio of the chlorauric acid to tannic acid is also varied to study the effect of molar ratio on nanoparticle size. The formation of gold nanoparticles is examined by UV-visual spectroscopy and the size distribution is determined using scanning electron microscopy. The synthesized nanoparticles size decreases from a parts per thousand yen6 nm to a parts per thousand currency sign4 nm when the molar ratio of chlorauric acid to tannic acid is increased from 1 to 20. It is found that there is no systematic variation of nanoparticle size with flow velocity, and the nanoparticle size is not altered when the flow changes from laminar to turbulent. However, the standard deviation of the size distribution decreases by about 30% after transition, indicating that the enhanced mixing results in uniformity of particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we maximize the thermoelectric (TE) figure of merit, ZT, of n-type skutterudites, (In,Sr,Ba,Yb)(y)Co4Sb12, via three different routes: (i) find the optimum fraction of In as fourth filler (ii) check the influence of powder particle, grain, and crystallite size on the TE properties and (iii) check thermal stability. Filled n-type (Sr, Ba, Yb)(y)Co4Sb12 was mixed in three different proportions with In0.4Co4Sb12, ball milled (regular or high-energy (HB) ball milling) and hot-pressed. Particle size analyses and SEM pictures of the broken surfaces of the hot pressed samples document that only HB produces uniform particles/grains with average crystallite sizes similar to 100 nm, proven by transmission electron microscopy. X-ray Rietveld refinements combined with EDX indicate that in all cases indium entered the icosahedral voids of the skutterudite. Temperature dependent physical properties of all three regularly ball-milled samples show that increasing In-content infers an increasing electrical resistivity, increasing Seebeck coefficient but a decreasing total thermal conductivity. Although ZT (823 K) is in the same range as for the sample without In, the ZT values in the whole temperature range are higher and consequently the TE-conversion efficiency, eta is at least 10% higher. Annealing the samples at 600 degrees C for three days shows minor changes in structure and thermoelectric properties, indicating TE stability. The HB sample, due to uniformly small particles, equally sized grains and crystallites, exhibits a high power factor (4.4 mW/m K-2 at 730 K) and a very low thermal conductivity leading to an outstanding high ZT = 1.8 at 823 K (eta(max) = 17.5%). (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During service and/or storage, Sn-Ag-Cu (SAC) solder alloys are subjected to temperatures ranging from 0.4 to 0.8 Tm (where Tm is the melting temperature of SAC alloys), making them highly prone to significant microstructural coarsening. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long-term reliability of microelectronic packages. Here, we study microstructure evolution and creep behavior of two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, isothermally aged at 150 degrees C for various lengths of time. Creep behavior of the two SAC solders after different aging durations was systematically studied using impression creep technique. The key microstructural features that evolve during aging are Ag3Sn particle size and inter-particle spacing. Creep results indicate that the creep rate increases considerably with increasing inter-particle spacing although the creep stress exponent and creep activation energy are independent of the aging history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.