982 resultados para Causal networks methodology
Resumo:
One of the major problems when using non-dedicated volunteer resources in adistributed network is the high volatility of these hosts since they can go offlineor become unavailable at any time without control. Furthermore, the use ofvolunteer resources implies some security issues due to the fact that they aregenerally anonymous entities which we know nothing about. So, how to trustin someone we do not know?.Over the last years an important number of reputation-based trust solutionshave been designed to evaluate the participants' behavior in a system.However, most of these solutions are addressed to P2P and ad-hoc mobilenetworks that may not fit well with other kinds of distributed systems thatcould take advantage of volunteer resources as recent cloud computinginfrastructures.In this paper we propose a first approach to design an anonymous reputationmechanism for CoDeS [1], a middleware for building fogs where deployingservices using volunteer resources. The participants are reputation clients(RC), a reputation authority (RA) and a certification authority (CA). Users needa valid public key certificate from the CA to register to the RA and obtain thedata needed to participate into the system, as now an opaque identifier thatwe call here pseudonym and an initial reputation value that users provide toother users when interacting together. The mechanism prevents not only themanipulation of the provided reputation values but also any disclosure of theusers' identities to any other users or authorities so the anonymity isguaranteed.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
The goal of this paper is twofold: first, we aim to assess the role played by inventors’ cross-regional mobility and networks of collaboration in fostering knowledge diffusion across regions and subsequent innovation. Second, we intend to evaluate the feasibility of using mobility and networks information to build cross-regional interaction matrices to be used within the spatial econometrics toolbox. To do so, we depart from a knowledge production function where regional innovation intensity is a function not only of the own regional innovation inputs but also external accessible R&D gained through interregional interactions. Differently from much of the previous literature, cross-section gravity models of mobility and networks are estimated to use the fitted values to build our ‘spatial’ weights matrices, which characterize the intensity of knowledge interactions across a panel of 269 regions covering most European countries over 6 years.
Resumo:
BACKGROUND The number of copies of the HLA-DRB1 shared epitope, and the minor alleles of the STAT4 rs7574865 and the PTPN22 rs2476601 polymorphisms have all been linked with an increased risk of developing rheumatoid arthritis. In the present study, we investigated the effects of these genetic variants on disease activity and disability in patients with early arthritis. METHODOLOGY AND RESULTS We studied 640 patients with early arthritis (76% women; median age, 52 years), recording disease-related variables every 6 months during a 2-year follow-up. HLA-DRB1 alleles were determined by PCR-SSO, while rs7574865 and rs2476601 were genotyped with the Taqman 5' allelic discrimination assay. Multivariate analysis was performed using generalized estimating equations for repeated measures. After adjusting for confounding variables such as gender, age and ACPA, the TT genotype of rs7574865 in STAT4 was associated with increased disease activity (DAS28) as compared with the GG genotype (β coefficient [95% confidence interval] = 0.42 [0.01-0.83], p = 0.044). Conversely, the presence of the T allele of rs2476601 in PTPN22 was associated with diminished disease activity during follow-up in a dose-dependent manner (CT genotype = -0.27 [-0.56- -0.01], p = 0.042; TT genotype = -0.68 [-1.64- -0.27], p = 0.162). After adjustment for gender, age and disease activity, homozygosity for the T allele of rs7574865 in STAT4 was associated with greater disability as compared with the GG genotype. CONCLUSIONS Our data suggest that patients with early arthritis who are homozygous for the T allele of rs7574865 in STAT4 may develop a more severe form of the disease with increased disease activity and disability.
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.
Resumo:
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
This paper proposes a multicast implementation based on adaptive routing with anticipated calculation. Three different cost measures for a point-to-multipoint connection: bandwidth cost, connection establishment cost and switching cost can be considered. The application of the method based on pre-evaluated routing tables makes possible the reduction of bandwidth cost and connection establishment cost individually
Resumo:
Argentina is among the four largest producers of soybeans, sunflower, corn, and wheat, among other agricultural products. Institutional and policy changes during the 1990s fostered the development of Argentine agriculture and the introduction of innovative process and product technologies (no-till, agrochemicals, GMO, GPS) and new investments in modern, large-scale sunflower and soybean processing plants. In addition to technological changes, a "quiet revolution" occurred in the way agricultural production was carried out and organized: from self-production or ownership agriculture to a contract-based agriculture. The objective of this paper is to explore and describe the emergence of networks in the Argentine crop production sector. The paper presents and describes four cases that currently represent about 50% of total grain and oilseed production in Argentina: "informal hybrid form", "agricultural trust fund", "investor-oriented corporate structure", and "network of networks". In all cases, hybrid forms involve a group of actors linked by common objectives, mainly to gain scale, share resources, and improve the profitability of the business. Informal contracts seem to be the most common way of organizing the agriculture process, but using short-term contracts and sequential interfirm collaboration. Networks of networks involve long-term relationships and social development, and reciprocal interfirm collaboration. Agricultural trust fund and investor-oriented corporate structures have combined interfirm collaboration and medium-term relationships. These organizational forms are highly flexible and show a great capacity to adapt to challenges; they are competitive because they enjoy aligned incentives, flexibility, and adaptability.