936 resultados para Carbon microcoils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g−1) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g−1) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyses soil organic carbon (SOC) and hot-water extractable carbon (HWC), both measures of soil quality, under different land management: (1) conventional tillage (CT); (2) CT plus the addition of oil mill waste alperujo (A); (3) CT plus the addition of oil mill waste olive leaves (L); (4) no tillage with chipped pruned branches (NT1); and (5) no tillage with chipped pruned branches and weeds (NT2); in a typical Mediterranean agricultural area; the olive groves of Andalucía, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2 the surface horizon (0-5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88.5% from the first (0-10 cm) to the second horizon (10-16 cm). Total SOC stock values were very similar under A (101.9 Mg ha−1), CT (101.7 Mg ha−1), NT1 (105.8 Mg ha−1) and NT2 (111.3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0.05) at 250.2 Mg ha−1. HWC decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2.3 and 4.9 mg g−1 respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2e reduced anion [Mn(CO)3(iPr-DAB)]− (DAB = 1,4- diazabuta-1,3-diene, iPr = isopropyl) was shown to convert in the presence of CO2 and a small amount of water to the unstable complex [Mn(CO)3(iPr-DAB)(η1-OCO2H)] (OCO2H− = unidentate bicarbonate) that was further reductively transformed to give a stable catalytic intermediate denoted as X2, showing νs(OCO) 1672 and 1646 (sh) cm−1. The subsequent cathodic shift by ca. 650 mV in comparison to the single 2e cathodic wave of the parent [Mn(CO)3(iPr-DAB)Br] triggers the reduction of intermediate X2 and catalytic activity converting CO2 to CO. Infrared spectroelectrochemistry has revealed that the high excess of CO generated at the cathode leads to the conversion of [Mn(CO)3(iPr-DAB)]− to inactive [Mn(CO)5]−. In contrast, the five-coordinate anion [Mn(CO)3(pTol-DAB)]−(pTol = 4-tolyl) is completely inert toward both CO2 and H2O (solvolysis). This detailed spectroelectrochemical study is a further contribution to the development of sustainable electro- and photoelectrocatalysts of CO2 reduction based on abundant first-row transition metals, in particular manganese.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca2+ -sensitive K+ channels. More recent studies have revealed the ability of CO to inhibit T-type Ca2+ channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the potential mutual conflict between interventions aimed at formalising artisanal and small-scale mining (ASM) on the one hand, and policies implemented in response to the Reducing Emissions from Deforestation and Forest Degradation (REDD) initiative on the other. Deforestation caused by ASM undermines sound forest management, and potentially threatens the implementation of REDD. Conversely, the adoption of REDD could further marginalise and criminalise the ASM sector, reducing its contribution to poverty alleviation. Reviewing a series of commonalities between ASM and forest management highlights many difficulties facing policy-makers. Potentially, contradictory outcomes of evolving governance arrangements means novel cross-sectoral institutions will be required in order to realise the full potential of REDD and ASM to address poverty reduction in a complementary fashion. The analysis reiterates the centrality of livelihoods to REDD and the need for policies to take into account local contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic and biogenic controls on the surface–atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2006 the UK government announced a move to zero carbon homes by 2016. The demand posed a major challenge to policy makers and construction professionals entailing a protracted process of policy design. The task of giving content to this target is used to explore the role of evidence in the policy process. Whereas much literature on policy and evidence treats evidence as an external input, independent of politics, this paper explores the ongoing mutual constitution of both. Drawing on theories of policy framing and the sociology of classification, the account follows the story of a policy for Zero Carbon Homes from the parameters and values used to specify the target. Particular attention is given to the role of Regulatory Impact Assessments (RIAs) and to the creation of a new policy venue, the Zero Carbon Hub. The analysis underlines the way in which the choices about how to model and measure the aims potentially transforms them, the importance of policy venues for transparency and the role of RIAs in the authorization of particular definitions. A more transparent, open approach to policy formulation is needed in which the framing of evidence is recognized as an integral part of the policy process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: An altered gastric emptying (GE) rate has been implicated in the aetiology of obesity. The (13)C-octanoic acid breath test (OBT) is frequently used to measure GE, and the cumulative percentage of (13)C recovered (cPDR) is a common outcome measure. However, true cPDR in breath is dependent on accurate measurement of carbon dioxide production rate (VCO(2)). The current study aimed to quantify differences in the (13)C OBT results obtained using directly measured VCO(2) (VCO(2DM)) compared with (i) predicted from resting VCO(2) (VCO(2PR)) and (ii) predicted from body surface area VCO(2) (VCO(2BSA)). METHODS: The GE rate of a high-fat test meal was assessed in 27 lean subjects using the OBT. Breath samples were gathered during the fasted state and at regular intervals throughout the 6-h postprandial period for determination of (13)C-isotopic enrichment by continuous-flow isotope-ratio mass spectrometry. The VCO(2) was measured directly from exhaled air samples and the PDR calculated by three methods. The bias and the limits of agreement were calculated using Bland-Altman plots. RESULTS: Compared with the VCO(2DM), the cPDR was underestimated by VCO(2PR) (4.8%; p = 0.0001) and VCO(2BSA) (2.7%; p = 0.02). The GE T(half) was underestimated by VCO(2PR) (13 min; p = 0.0001) and VCO(2BSA) (10 min; p = 0.01), compared with VCO(2DM). CONCLUSIONS: The findings highlight the importance of directly measuring VCO(2)production rates throughout the (13)C OBT and could partly explain the conflicting evidence regarding the effect of obesity on GE rates.