964 resultados para Carbon labels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the cold period of the Last Glacial Maximum (LGM, about 21 000 years ago) atmospheric CO2 was around 190 ppm, much lower than the pre-industrial concentration of 280 ppm. The causes of this substantial drop remain partially unresolved, despite intense research. Understanding the origin of reduced atmospheric CO2 during glacial times is crucial to comprehend the evolution of the different carbon reservoirs within the Earth system (atmosphere, terrestrial biosphere and ocean). In this context, the ocean is believed to play a major role as it can store large amounts of carbon, especially in the abyss, which is a carbon reservoir that is thought to have expanded during glacial times. To create this larger reservoir, one possible mechanism is to produce very dense glacial waters, thereby stratifying the deep ocean and reducing the carbon exchange between the deep and upper ocean. The existence of such very dense waters has been inferred in the LGM deep Atlantic from sediment pore water salinity and δ18O inferred temperature. Based on these observations, we study the impact of a brine mechanism on the glacial carbon cycle. This mechanism relies on the formation and rapid sinking of brines, very salty water released during sea ice formation, which brings salty dense water down to the bottom of the ocean. It provides two major features: a direct link from the surface to the deep ocean along with an efficient way of setting a strong stratification. We show with the CLIMBER-2 carbon-climate model that such a brine mechanism can account for a significant decrease in atmospheric CO2 and contribute to the glacial-interglacial change. This mechanism can be amplified by low vertical diffusion resulting from the brine-induced stratification. The modeled glacial distribution of oceanic δ13C as well as the deep ocean salinity are substantially improved and better agree with reconstructions from sediment cores, suggesting that such a mechanism could have played an important role during glacial times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During glacial periods, atmospheric CO2 concentration increases and decreases by around 15 ppm. At the same time, the climate changes gradually in Antarctica. Such climate changes can be simulated in models when the AMOC (Atlantic Meridional Oceanic Circulation) is weakened by adding fresh water to the North Atlantic. The impact on the carbon cycle is less straightforward, and previous studies give opposite results. Because the models and the fresh water fluxes were different in these studies, it prevents any direct comparison and hinders finding whether the discrepancies arise from using different models or different fresh water fluxes. In this study we use the CLIMBER-2 coupled climate carbon model to explore the impact of different fresh water fluxes. In both preindustrial and glacial states, the addition of fresh water and the resulting slow-down of the AMOC lead to an uptake of carbon by the ocean and a release by the terrestrial biosphere. The duration, shape and amplitude of the fresh water flux all have an impact on the change of atmospheric CO2 because they modulate the change of the AMOC. The maximum CO2 change linearly depends on the time integral of the AMOC change. The different duration, amplitude, and shape of the fresh water flux cannot explain the opposite evolution of ocean and vegetation carbon inventory in different models. The different CO2 evolution thus depends on the AMOC response to the addition of fresh water and the resulting climatic change, which are both model dependent. In CLIMBER-2, the rise of CO2 recorded in ice cores during abrupt events can be simulated under glacial conditions, especially when the sinking of brines in the Southern Ocean is taken into account. The addition of fresh water in the Southern Hemisphere leads to a decline of CO2, contrary to the addition of fresh water in the Northern Hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with ice core data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr�-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m�-2 with 90% uncertainty bounds of (+0.08, +1.27)Wm�-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m�-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m�-2 with 90% uncertainty bounds of +0.17 to +2.1 W m�-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m�-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (�-0.50 to +1.08) W m-�2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (�-0.06 W m�-2 with 90% uncertainty bounds of �-1.45 to +1.29 W m�-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a range of studies based in the low carbon arena which use various ‘futures’- based techniques as ways of exploring uncertainties. These techniques range from ‘scenarios’ and ‘roadmaps’ through to ‘transitions’ and ‘pathways’ as well as ‘vision’-based techniques. The overall aim of the paper is therefore to compare and contrast these techniques to develop a simple working typology with the further objective of identifying the implications of this analysis for RETROFIT 2050. Using recent examples of city-based and energy-based studies throughout, the paper compares and contrasts these techniques and finds that the distinctions between them have often been blurred in the field of low carbon. Visions, for example, have been used in both transition theory and futures/Foresight methods, and scenarios have also been used in transition-based studies as well as futures/Foresight studies. Moreover, Foresight techniques which capture expert knowledge and map existing knowledge to develop a set of scenarios and roadmaps which can inform the development of transitions and pathways can not only help potentially overcome any ‘disconnections’ that may exist between the social and the technical lenses in which such future trajectories are mapped, but also promote a strong ‘co-evolutionary’ content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to explore how companies that hold carbon trading accounts under European Union Emissions Trading Scheme (EU ETS) respond to the climate change by using disclosures on carbon emissions as a means to generate legitimacy compared to others. The study is based on disclosures made in annual reports and stand-alone sustainability reports of UK listed companies from 2001- 2012. The study uses content analysis to capture both the quality and volume of the carbon disclosures. The results show that there is a significant increase in both the quality and volume of the carbon disclosures after the launch of EU ETS. Companies with carbon trading accounts provide greater detailed disclosures as compared to the others without an account. We also find that company size is positively correlated with the disclosures while the association with the industry produces an inconclusive result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cities play a significant role globally in creating carbon emissions but, as centers of major population, innovation and social practice, they also offer important opportunities to tackle climate change. The new challenges faced by cities in an ‘age of austerity’ and decentralist agendas present substantial challenges for coordinated multilevel governance. Results: Based on research carried out in 2011–2012, this paper examines the attitudes and responses of sustainability and climate change officers in UK cities that have prepared low carbon and climate change plans, in the context of these challenges. Using a conceptual framework that analyses ‘awareness’, ‘analysis’ and ‘actions’ (in the context of spending cuts and a new ‘decentralized’ policy agenda) this research suggests that progress on low-carbon futures for cities continues to be fragmented, with increased funding constraints, short-termism and lack of leadership acting as key barriers to progress. Conclusion: Recent UK national policies (including localism, austerity measures and new economic incentives) have not only created further uncertainties, but also scope for cities’ local innovation through policy leverage and self-governing actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) and data from a coupled climate–carbon cycle general circulation model to investigate the impact of direct heterotrophic respiration dependence on soil moisture on the climate carbon cycle feedback. Global changes in soil moisture acted to oppose temperature‐driven decreases in soil carbon and hence tended to increase soil carbon storage. We found considerable uncertainty in soil carbon changes due to the response of soil respiration to soil moisture. The use of different SMRFs resulted in both large losses and small gains in future global soil carbon stocks, whether considering all climate forcings or only moisture changes. Regionally, the greatest range in soil carbon changes across SMRFs was found where the largest soil carbon changes occurred. Further research is needed to constrain the soil moisture–respiration relationship and thus reduce uncertainty in climate–carbon cycle feedbacks. There may also be considerable uncertainty in the regional responses of soil carbon to soil moisture changes since climate model predictions of regional soil moisture changes are less coherent than temperature changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sub-lethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na+ channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na+ current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognised CO-sensitive intracellular signalling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of nitric oxide (NO) formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to dithiothreitol immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, L-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor L-NAME, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na+ current (which can lead to Brugada-syndrome like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation and is dependent on channel redox state.