988 resultados para Carbon isotope


Relevância:

60.00% 60.00%

Publicador:

Resumo:

震旦-寒武交变期是地史上一个重大转折期,从隐生宙向显生宙过渡,海、陆、空发生了显著不同的变化,是一个具有特殊意义的过渡时期。中国扬子地区广泛发育的海相沉积层序有效地记录了震旦一寒武交变期重要的地质事件,因此为研究该时期大气圈、生物圈、岩石圈和水圈的相互联系提供了独一无二的场所。在前寒武纪一寒武纪地质研究中,由于缺少标志性生物化石,行之有效的生物地层学方法在上前寒武系的划分和对比中受到很大限制,沉积有机,质干酪根和相应碳酸盐的稳定碳同位素分析已经成为全球对比和划分的一个极为重要的的研究方法。尽管一些学者对扬子地台进行了多年的地球化学研究,使用碳酸盐和与之共生的有机质碳同位素组成对广泛的扬子地台变化的沉积环境进行研究还很欠缺、对分析和探讨该时期的生命演化过程和环境变化的关系研究方面还不足。本研究是以中国扬子地区为研究范围,用沉积碳酸盐和与之共生的有机质碳同位素组成对广泛的扬子地台变化的沉积环境(台地相、盆地相、过渡地带)进行分析,初步建立了一个地球化学模型,用于解释震旦一寒武交变期沉积地球化学记录,分析和探讨区域扬子地台碳循环和环境变化与地质事件之间的内在和外在联系:(1)南沱期:有机碳同位素组成(瓮安剖面平均值在-35.0‰左右)表现为较强负异常。地球被称为雪球(Snow-ball)或部分冰雪覆盖球体(Slush-ball),水体滞留和水动力不强,原始产率较低,物源以深源为主;生物不发育,主要是细菌和低等的真核细胞生物;空气和海水的气体通过冰裂缝进行交换,促进了碳酸盐的溶解;有机碳循环主要通过厌氧过程,比如细菌硫酸盐还原作用进行。(2)陡山沱期和灯影期:南沱晚期一陡山沱早期,海水的碳酸盐碳同位素组成短期仍然较负(瓮安剖面的δl3Ccarb-avg为-2.8‰ 松桃剖面1、2的δ13Ccarb-avg分别是-3.5%0和-8.6%。);有机质的碳同位素组成总体呈现正漂移(瓮安护3Corg-avg:-26.3‰;南明剖面的δ13Corg-avg高达-26.7‰),这正是全球分布的“帽”碳酸盐出现的时期:接近地表的火山去气作用释放出较之现代350倍的CO2,导致地球迅速变暖,冰雪融化,大陆风化作用加强,海平面上升,“雪球,,转化为“温室,大气中大量的CO2快速转化为碳酸钙沉入海水中。全球可能处于一个异常高的海洋沉积速率时期。随后陡山沱组的护3Ccarb值显著上升,暗示了这一时期生物作用加强,有机碳埋藏速率明显提高,有机碳和还原硫埋藏的增加,导致上层海水345的富集,硫同位素组成较高。热液作用和上升洋流作用促成了瓮安磷矿的形成和瓮安生物群的繁盛。在南沱冰期后的陡山沱期和灯影期,高的别3c的出现主要是由于进行光合作用的海洋植物群体产率的迅速增加、海洋沉积速率的升高、海洋深部水柱中缺氧层的存在、热液活动、上升洋流作用、海水分层结构引起的,而短期同位素组成的负漂移和生物产率的变化则可能是区域事件所造成。明显的碳同位素组成负漂移出现在前寒武/寒武界线附近,这反映了碳短期变化的翻覆,与震旦纪末生物绝灭、环境变化的地质事件相符合。(3)牛蹄塘期:本研究结果发现,在牛蹄塘组/郭家坝组底部黑色岩系中,有机碳、无机碳、有机硫、黄铁矿硫同位素组成值相对较低,有机碳和黄铁矿含量相对较高。δ3Corg-avg和δ3Ccarb-avg分别是-33.9士0.7‰和-2.5=0.4‰;TOC>0.5;黄铁矿平均含量为0.96%间变化;黄铁矿(δ4ScRs)和有机硫同位素组成(δ34SOBS)平均值分别为0.3士7.5‰和3.4土7.1‰。由于牛蹄塘初期的环境变化频繁和不稳定,扬子区处于一段特殊的时期,碳、硫同位素组成延续上震旦统的负漂移现象,海侵事件、还原环境、缺氧事件、裂谷作用火山喷发、、气液喷溢、热水作用等造成海水相刘较深,有机碳埋藏量增大,多金属富集成矿。在牛蹄塘中晚期碳同位素组成趋于稳定,碳同位素组成重化,有机碳和黄铁矿含量降低:碳酸盐和有机质的碳同位素组成平均值分别是0.31±1.0‰和-31.41.3%。(沙滩),呈现稳定的正漂移;TOC平均值是0.8%;沙滩剖面郭家坝组中上部样品的黄铁矿平均含量0.5%;δ34SCRS-avg和δ34SOBS-avg为17.8士2.0‰和16.9±1.8‰。在牛蹄塘中期,随着大气圈和水圈中CO2含量降低、环境稳定,促使寒武纪生物繁盛,可能与增加的寒武系生物产量和微生物作用有关。对牛蹄塘期的环境情况有如下分析:随着全球变暖、海平面迅速上升,上升洋流活跃,由于分层海水的存在,海水在氧化带附近及其上部具有较高的有机物生成率,使寒武纪初期成为形成植物繁衍和带壳动物爆发的重要时期。碳同位素组成由震旦一寒武交变期的不稳定负漂移变化到稳定正漂移,这与世界其它地区的变化相一致。下寒武统富有机碳和黄铁矿的黑色页岩沉积,暗示了早寒武世缺氧环境的存在。(4)凯里期:早中寒武世交变期有机碳和无机碳同位素组成规律的变化,出现在扬子地台台江剖面上。有机质埋藏的变化,与生物从下寒武到中寒武统的变化相联系。碳酸盐和有机碳同位素组成的变化规律,反映了震旦一寒武交变期沉积环境的多变和震旦一寒武交变期碳循环的波动,这与变化的古环境背景、环境条件和生物演化的变化相互联系。碳酸盐碳同位素组成反映了海水最初的同位素信息;海底热液作用和上升一洋流作用可能成为影响碳同位素组成的重要因素。然而,各一地区在同一时期存在相似性,也有很大的不同,所以针对区域和局部事件,还需要进一步研究和探讨。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

作者通过对淡水、分层、富营养湖泊光合作用对水体碳同位素组成影响的系统分析,对争论长达20年的, 湖水上层碳源问题从理论上和实测资料上绘出了一个有说服力的解释模式-“生物泵模式”。利用这种模式,有效地解释了大量预测到以前不能很好被说明的实测数据。作者提出和建立了辨识湖泊的同源碳酸盐的实验方法和实验交流。通过理论和实测数据的分解,说明了该实验系统的可行性和有效性。利用这种技术,提高了对碳酸盐同位系环境信息的分辨能力。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: At a large North Sea pockmark, with active methane seeps, surface sediments were found to have higher insoluble sulphide concentrations than sedlments from the surrounding area. The fauna of the pockmark was characterized by 2 species which have not pi-evlously been reported from the Fladen Ground in the northern North Sea. These species were a b~valve, Thyasira sarsi (which is known to contain endosymbiotic sulphur-oxidising bacteria) and a mouthless and gutless nematode, Astomonerna sp., which also contains endosymbiotic bacteria The nematode was the dominant meiofauna species in the pockmark sediments. Both macro-lnfauna and total nematodes were in low abundance in samples taken from the base of the pockmark. Sediment samples from the pockmark contained numerous otoliths, implying that substantial winnowing of the sediment had taken place. This was supported by studies on the sulphide concentrations in the sediment which showed multiple layering of the sediments on the sides of the pockmark, suggesting displacement. The carbon isotope compositions (6I3c) of the tissues of benthic animals from in and around the pockmark were generally in the range -16 to -2O%, indicating that little methane-derived carbon was contributing to their nutrition. T sarsi had the most 13c-depleted tissues, -31.4 to -35.1 L, confirming the nutritional dependence of this species on chemoautotrophic bacteria that utilize reduced sulphur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites), shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle East, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Réalisé en cotutelle avec le Département de Préhistoire du Muséum national d’Histoire naturelle (Paris, France), École doctorale « Sciences de la nature et de l’Homme » (ED 227)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cochin estuarine system is among the most productive aquatic environment along the Southwest coast of India, exhibits unique ecological features and possess greater socioeconomic relevance. Serious investigations carried out during the past decades on the hydro biogeochemical variables pointed out variations in the health and ecological functioning of this ecosystem. Characterisation of organic matter in the estuary has been attempted in many investigations. But detailed studies covering the degradation state of organic matter using molecular level approach is not attempted. The thesis entitled Provenance, Isolation and Characterisation of Organic Matter in the Cochin Estuarine Sediment-“ A Diagenetic Amino Acid Marker Scenario” is an integrated approach to evaluate the source, quantity, quality, and degradation state of the organic matter in the surface sediments of Cochin estuarine system with the combined application of bulk and molecular level tools. Sediment and water samples from nine stations situated at Cochin estuary were collected in five seasonal sampling campaigns, for the biogeochemical assessment and their distribution pattern of sedimentary organic matter. The sampling seasons were described and abbreviated as follows: April- 2009 (pre monsoon: PRM09), August-2009 (monsoon: MON09), January-2010 (post monsoon: POM09), April-2010 (pre monsoon: PRM10) and September- 2012 (monsoon: MON12). In order to evaluate the general environmental conditions of the estuary, water samples were analysed for water quality parameters, chlorophyll pigments and nutrients by standard methods. Investigations suggested the fact that hydrographical variables and nutrients in Cochin estuary supports diverse species of flora and fauna. Moreover the sedimentary variables such as pH, Eh, texture, TOC, fractions of nitrogen and phosphorous were determined to assess the general geochemical setting as well as redox status. The periodically fluctuating oxic/ anoxic conditions and texture serve as the most significant variables controlling other variables of the aquatic environment. The organic matter in estuary comprise of a complex mixture of autochthonous as well as allochthonous materials. Autochthonous input is limited or enhanced by the nutrient elements like N and P (in their various fractions), used as a tool to evaluate their bioavailability. Bulk parameter approach like biochemical composition, stoichiometric elemental ratios and stable carbon isotope ratio was also employed to assess the quality and quantity of sedimentary organic matter in the study area. Molecular level charactersation of free sugars and amino acids were carried out by liquid chromatographic techniques. Carbohydrates are the products of primary production and their occurrence in sediments as free sugars can provide information on the estuarine productivity. Amino acid biogeochemistry provided implications on the system productivity, nature of organic matter as well as degradation status of the sedimentary organic matter in the study area. The predominance of carbohydrates over protein indicated faster mineralisation of proteinaceous organic matter in sediments and the estuary behaves as a detrital trap for the accumulation of aged organic matter. The higher lipid content and LPD/CHO ratio pointed towards the better food quality that supports benthic fauna and better accumulation of lipid compounds in the sedimentary environment. Allochthonous addition of carbohydrates via terrestrial run off was responsible for the lower PRT/CHO ratio estimated in thesediments and the lower ratios also denoted a detrital heterotrophic environment. Biopolymeric carbon and the algal contribution to BPC provided important information on the better understanding the trophic state of the estuarine system and the higher values of chlorophyll-a to phaeophytin ratio indicated deposition of phytoplankton to sediment at a rapid rate. The estimated TOC/TN ratios implied the combined input of both terrestrial and autochthonous organic matter to sedimentsAmong the free sugars, depleted levels of glucose in sediments in most of the stations and abundance of mannose at station S5 was observed during the present investigation. Among aldohexoses, concentration of galactose was found to be higher in most of the stationsRelative abundance of AAs in the estuarine sediments based on seasons followed the trend: PRM09-Leucine > Phenylalanine > Argine > Lysine, MON09-Lysine > Aspartic acid > Histidine > Tyrosine > Phenylalanine, POM09-Lysine > Histadine > Phenyalanine > Leucine > Methionine > Serine > Proline > Aspartic acid, PRM10-Valine > Aspartic acid > Histidine > Phenylalanine > Serine > Proline, MON12-Lysine > Phenylalanine > Aspartic acid > Histidine > Valine > Tyrsine > MethionineThe classification of study area into three zones based on salinity was employed in the present study for the sake of simplicity and generalized interpretations. The distribution of AAs in the three zones followed the trend: Fresh water zone (S1, S2):- Phenylalanine > Lysine > Aspartic acid > Methionine > Valine ῀ Leucine > Proline > Histidine > Glycine > Serine > Glutamic acid > Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine. Estuarine zone (S3, S4, S5, S6):- Lysine > Aspartic acid > Phenylalanine > Leucine > Valine > Histidine > Methionine > Tyrosine > Serine > Glutamic acid > Proline > Glycine > Arginine > Alanine > Isoleucine > Cysteine > Threonine. Riverine /Industrial zone (S7, S8, S9):- Phenylalanine > Lysine > Aspartic acid > Histidine > Serine > Arginine > Tyrosine > Leucine > Methionine > Glutamic acid > Alanine > Glycine > Cysteine > Proline > Isoleucine > Threonine > Valine. The abundance of AAs like glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and phenylalanine in sediments of the study area indicated freshly derived organic matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coupled δ13C-radiocarbon systematics of threeEuropean stalagmites deposited during the Late Glacial and early Holocene were investigated to understand better how the carbon isotope systematics of speleothems respond to climate transitions. The emphasis is on understanding how speleothems may record climate-driven changes in the proportions of biogenic (soil carbon) and limestone bedrock derived carbon. At two of the three sites, the combined δ13C and 14C data argue against greater inputs of limestone carbon as the sole cause of the observed shift to higher δ13C during the cold Younger Dryas. In these stalagmites (GAR-01 from La Garma cave, N. Spain and So-1 from Sofular cave, Turkey), the combined changes in δ13C and initial 14C activities suggest enhanced decomposition of old stored, more recalcitrant, soil carbon at the onset of the warmer early Holocene. Alternative explanations involving gradual temporal changes between open- and closed-system behaviour during the Late Glacial are difficult to reconcile with observed changes in speleothem δ13C and the growth rates. In contrast, a stalagmite from Pindal cave (N. Spain) indicates an abrupt change in carbon inputs linked to local hydrological and disequilibrium isotope fractionation effects, rather than climate change. For the first time, it is shown that while the initial 14C activities of all three stalagmites broadly follow the contemporaneous atmospheric 14C trends (the Younger Dryas atmospheric 14C anomaly can be clearly discerned), subtle changes in speleothem initial 14C activities are linked to climate-driven changes in soil carbon turnover at a climate transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of Neotropical fossil phytolith assemblages for palaeoenvironmental and archaeological reconstructions relies on the development of appropriate modern analogues. We analyzed modern phytolith assemblages from the soils of ten distinctive tropical vegetation communities in eastern lowland Bolivia, ranging from terra firme humid evergreen forest to seasonally-inundated savannah. Results show that broad ecosystems – evergreen tropical forest, semi-deciduous dry tropical forest, and savannah – can be clearly differentiated by examination of their phytolith spectra and the application of Principal Component Analysis (PCA). Differences in phytolith assemblages between particular vegetation communities within each of these ecosystems are more subtle, but can still be identified. Comparison of phytolith assemblages with pollen rain data and stable carbon isotope analyses from the same vegetation plots show that these proxies are not only complementary, but significantly improve taxonomic and ecosystem resolution, and therefore our ability to interpret palaeoenvironmental and archaeological records. Our data underline the utility of phytolith analyses for reconstructing Amazon Holocene vegetation histories and pre-Columbian land use, particularly the high spatial resolution possible with terrestrial soil-based phytolith studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±251621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±251617±25 and 1589±251589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gongzha section of Tibet, China is located at the northern margin of the Indian Plate (SE Tethys) and is characterized by hemipelagic grey marls and marly limestones, light grey limestones and silty limestones, but no organic-rich sediments. High-resolution biostratigraphy reveals an expanded Cenomanian–Turonian (CT) boundary interval and the δ13C record includes the main features of the classical positive carbon-isotope excursion that characterizes the CT oceanic anoxic event. The biotic response inferred from the foraminifera suggests that oxic to dysoxic conditions prevailed, except for a short interval marked by peak abundance of Heterohelix that indicates a significantly dysoxic environment during the δ13C “b” peak excursion. The overall decreasing trend in redox-sensitive trace elements (RSTE) during the maximum δ13C excursion confirms the absence of significant longer-lasting anoxia in the Gongzha section. Enrichments in RSTE are linked to phases of increased detrital input. Chemical weathering indices suggest that the upper Cenomanian sediments accumulated under an increasingly hot and humid climate that culminated near the CT boundary. In the early Turonian lower weathering indices suggest a warm, drier climatic regime with reduced continental runoff. Phosphorus mass-accumulation rates show a significant peak at the onset of the positive δ13C excursion, followed by a decrease up to the basal Turonian. This pattern is positively correlated with the long-term decrease in detrital index as also observed in numerous other CT boundary sections (e.g., Eastbourne, Pueblo, and Whadi El Ghaib, Sinaï). Long-term phosphorus accumulation in the Gongzha section is therefore associated with changes in detrital input. The overall decreased detrital input can be explained by the increasingly remote continental sources due to the major transgression at the end of Cenomanian, coupled with changes in continental weathering intensity linked to increasingly more arid climate conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance). Methods Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation. Results Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought. Conclusions These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.