855 resultados para Carbon fiber reinforced plastic
Resumo:
Fiber Bragg Grating (FBG) sensors have been extensively used for strain and temperature sensing. However, there is still a need to measure multiple environmental parameters with a single sensor system. We demonstrate a multiplexed FBG sensor with various nano materials (polyallylamine-amino-carbon-nanotube, carbon nanotubes, polyelectrolyte and metals) coated onto the surface of the core/cladding FBG for sensing multiple environmental parameters such as pH (64 pm/pH), protein concentration (5 pm/mu g/ml), temperature (15 pm/degrees C), humidity (31 pm/% RH), gas concentration (7 pm/1000 ppm), and light intensity (infrared: 33 pm/mW, visible: 12 pm/mW and UV: 1 pm/mW) utilizing the same FBG based platform.
Resumo:
Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMA-epoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.
Resumo:
A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40-50 nm.
Resumo:
Titanium carbide reinforced nickel aluminide matrix in situ composites were produced using a newly patented laser melting furnace. Microstructure of the laser melted TiC/(Ni3Al–NiAl) in situ composites was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results showed that the constituent phases in the laser melted in situ composites are TiC, Ni3Al and NiAl. Volume fraction of TiC and NiAl increase with increasing content of titanium and carbon. The growth morphology of the reinforcing TiC carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid.
Resumo:
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance
Resumo:
Ink-jet printing is an important process for placing active electronics on plastic substrates. We demonstrate ink-jet printing as a viable method for large area fabrication of carbon nanotube (CNT) thin film transistors (TFTs). We investigate different routes for producing stable CNT solutions ("inks"). These consist of dispersion methods for CNT debundling and the use of different solvents, such as N -methyl-2-pyrrolidone. The resulting printable inks are dispensed by ink-jet onto electrode bearing silicon substrates. The source to drain electrode gap is bridged by percolating networks of CNTs. Despite the presence of metallic CNTs, our devices exhibit field effect behavior, with effective mobility of ∼0.07 cm2 /V s and ON/OFF current ratio of up to 100. This result demonstrates the feasibility of ink-jet printing of nanostructured materials for TFT manufacture. © 2007 American Institute of Physics.
Resumo:
This paper reviews work on low temperature growth of carbon nanotubes, on Si, on plastic, on carbon cloth, using sputtered and colloidal catalysts, and with nano-imprinted patterning. © 2005 Materials Research Society.
Resumo:
研究了短纤维/晶须增强金属基复合材料在弹塑性变形中的应变分布, 得到了增强体与基体应变的统计规律, 提出了短纤维/晶须增强金属基复合材料的材料模型, 导出了相应的弹塑性本构关系, 预测了硼酸铝晶须增强Al基([AlBO]_w/Al)复合材料单轴拉伸应力应变关系, 结果与实验吻合良好.
Resumo:
A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.
Resumo:
A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.
Resumo:
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.
Resumo:
The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening curve higher than the compressive one and this is in agreement with experimental observations. (C) 1998 Elsevier Science Ltd.
Resumo:
Bamboo reinforced epoxy possesses reasonably good properties to waarrant its use as a structural material, and is fabricated by utilizing bamboo, an abundant material resource, in the technology of fibre composites. Literature on bamboo-plastics composites is rare. This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92.10(-3) (degrees C)(-1). The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 degrees C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.