940 resultados para Carbohydrate Portions
Resumo:
A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the. presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml(-1)). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel multidomain C-type lectin gene from scallop Chlamys farreri (designated as Cflec-4) was cloned by RACE approach based on EST analysis. The full-length cDNA of Cflec-4 was of 2086 bp. The open reading frame was of 1830 bp and encoded a polypeptide of 609 amino acids, including a signal sequence and four dissimilar carbohydrate-recognition domains (CRDs). The deduced amino acid sequence of CflecA shared high similarities to other C-type lectin family members. The phylogenetic analysis revealed the divergence between the three N-terminal CRDs and the C-terminal one, suggesting that the four CRDs in Cflec-4 originated by repeated duplication of different primordial CRD. The potential tertiary structure of each CRD in Cflec-4 was typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The tissue distribution of Cflec-4 mRNA was examined by fluorescent quantitative real-time PCR. In the healthy scallops, the Cflec-4 transcripts could be only detected in gonad and hepatopancreas, whereas in the Listonella anguillarum challenged scallops, it could be also detected in hemocytes. These results collectively suggested that CflecA was involved in the immune defense of scallop against pathogen infection and provided new insight into the evolution of C-type lectin superfamily. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5'-terminal untranslated region (UTR) of 60 bp and a 3'-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys(53), Cys(128), Cys(144), Cys(152)) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are Ca2+ dependent carbohydrate-recognition proteins that play crucial roles in the invertebrate innate immunity, such as nonself recognition, activation of proPO system, antibacterial activity, promotion of phagocytosis and nodule formation. In this study, a novel C-type lectin of bay scallops Argopecten irradians (Ai Lec) was identified using expressed sequence tag (EST) and RACE techniques. The Ai Lec cDNA encoded a polypeptide of 171 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 150 amino acids. The deduced amino acid sequence of Ai Lec was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 131 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. The expression of Ai Lec transcript was dominantly detected in the hepatopancreas and slightly detected in the haemocytes of normal scallops. 6 h after Vibrio anguillarum-challenge and 8 h after Micrococcus luteus-challenge, the temporal expression of Ai Lec mRNA in hemocytes was increased by 4.4- and 3.6-folds, respectively. The results suggested that Ai Lec was a constitutive and inducible acute-phase protein and might be involved in immune response to Gram-negative and Gram-positive microbial infection in bay scallop A. irradians.
Resumo:
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have I I amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site I are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectin is a family of Ca2+ dependent carbohydrate-recognition proteins which play crucial roles in the innate immunity of invertebrates by mediating the recognition of host cells to pathogens and clearing microinvaders as a pattern recognition protein (PRP). The cDNA of Zhikong scallop Chlamys farreri C-type lectin (designated CFLec-1) was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of CFLec-1 was 1785 bp, consisting of a 5'-terminal untranslated region (UTR) of 66 bp and an unusually long 3' UTR of 1040 bp with seven polyadenylation signal sequences AATAAA and a poly(A) tail. The CFLec-1 cDNA encoded a polypeptide of 221 amino acids with a putative signal peptide of 15 amino acid residues and a mature protein of 206 amino acids. Analysis of the protein domain features indicated a typical long-form carbohydrate-recognition domain (CRD) of 130 residues in the CFLec-1 deduced amino acid sequence. The expression pattern of CFLec-1 transcripts in healthy and bacterial challenged scallops was studied by semi-quantitative RT-PCR. mRNA transcripts of CFLec-1 could be mainly detected in the tissues of haemocytes, gill, gonad and mantle of unchallenged scallops, whereas the expression of CFLec-1 transcripts was increased in all the tested tissues after heat-killed Vibrio anguillarum challenge. The temporal expression of CFLec-1 mRNA in haemolymph challenged by Micrococcus luteus and V anguillarum was both up-regulated and reached the maximum level at 8 and 16 It post stimulation, respectively, and then dropped back to the original level. In order to investigate its immune functions, CFLec- I was recombined and expressed in Escherichia coli BL21(DE3)-pLysS as a fusion protein with thioredoxin. The recombinant CFLec-1 agglutinated bacteria E. coli JM109 in vitro, and the agglutination was Ca2+ dependent which could be inhibited by EDTA. But it did not agglutinate M. luteus, Candida lipolytica and animal erythrocytes including rabbit, rat, mouse, chicken, human group A, human group B, human group O. Meanwhile, the recombinant CFLec-1 could inhibit the growth of both E. coli JM 109 and M. luteus, but no inhibition activity against V anguillarum. These result indicated that CFLec-1 was a constitutive and inducible PRP which was involved in the reorganization and clearance of invaders in scallop. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectins are a family of carbohydrate-recognition proteins which play crucial roles in innate immunity. In this study, a new lectin (CfLec-2) gene was cloned from Chlamys farreri by EST and RACE approaches. The full-length cDNA of CfLec-2 was composed of 708 bp, encoding a typical Long form carbohydrate-recognition domain of 130 residues. The deduced amino acid sequence showed high similarity to Brevican in Homo sapiens, C-type lectin-1 and lectin-2 in Anguilla japonica. The cDNA fragment encoding the mature peptide of CfLec-2 was recombined into plasmid pET-32a (+) and expressed in Escherichia coli Rosseta-Gami (DE3). The recombinant CfLec-2 (rCfLec-2) protein exhibited aggregative activity toward Staphylococcus haemolyticus, and the agglutination could be inhibited by D-mannose but not EDTA or D-galactose, indicating that CfLec-2 was a Ca2+ independent lectin. Moreover, rCfLec-2 could suppress the growth of E. coli TOP10F'. These results suggested that CfLec-2 was perhaps involved in the recognition and clearance of bacterial. pathogens in scallop. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)(n) repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective I showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA),, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1 > P2 > P3 > P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
C-type lectins are calcium-dependent carbohydrate-binding proteins that play Important roles in innate immunity In this study, a C-type lectin homologue (SmLec1) was identified from turbot (Scophthalmus maximus) and analyzed at expression and functional levels. The open reading frame of SmLec1 is 504 bp, with a 5'-untranslated region (UTR) of 101 bp and a 3'-UTR of 164 bp The deduced amino acid sequence of SmLec1 shares 34%-38% overall identities with the C-type lectins of several fish species In silico analysis identified in SmLec1 conserved C-type lectin features, including a carbohydrate-recognition domain, four disulfide bond-forming cysteine residues, and the mannose-type carbohydrate-binding motif In addition, SmLec1 possesses a putative signal peptide sequence and is predicted to be localized in the extracellular. Expression of SmLec1 was highest in liver and responded positively to experimental challenges with fish pathogens Recombinant SmLec1 (rSmLec1) purified from yeast was able to agglutinate the Gram-negative fish pathogen Listonella anguillarum but not the Gram-positive pathogen Streptococcus uncle The agglutinating ability of rSmLec1 was abolished in the presence of mannose and ethylenediaminetetraacetic acid and by elevated temperature (65 degrees C) Further analysis showed that rSmLec1 could stimulate kidney lymphocyte proliferation and enhance the killing of bacterial pathogen by macrophages Taken together, these results suggest that SmLec1 is a unique mannose-binding C-type lectin that possesses apparent immunomodulating property and is likely to be involved in host defense against bacterial infection (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.
Resumo:
栉孔扇贝是我国北方一种重要的贝类养殖品种。自1997年以来爆发的栉孔扇贝大规模死亡,给地区经济造成了重大损失并且已经严重威胁着扇贝养殖业的健康发展。然而,到目前为止,对扇贝免疫防御分子机理的了解还很少,深入研究扇贝免疫应答的分子机制是认识和了解病害发生和实现病害控制的重要途径。本研究采用了EST大规模测序和3’RACE的方法,从栉孔扇贝cDNA文库中克隆到一个凝集素基因CfLec-2,并对功能进行了研究。 CfLec-2 cDNA全长708bp,5’非翻译区(Untranslated Region, UTR)含有59bp,3’非翻译区含有163bp,具有典型的多聚腺苷酸加尾信号序列AATAAA和多聚腺苷酸尾巴,开放阅读框(Open Reading Frame, ORF )含有486bp,编码162个氨基酸残基,该多肽的理论分子量为16.8 kDa,等电点为4.54。利用SignalP分析,发现其信号肽的剪切位置在VEA-QSL之间。经BLASTP比对分析可知,CfLec-2基因编码的蛋白与人的Brevican,Anguilla japonica的C-type lectin-1和C-type lectin-2, Rattus norvegicus的CD23有较高的相似性,其中与Brevican的一致性有37%。Clustal W多序列比对发现该多肽具有标准长型C型凝集素所必须的6个保守半胱氨酸和相对保守的糖识别位点。用SMART(Small Modular Architecture Research Tool)软件分析发现其具有一个保守的糖识别结构域(Carbohydrate-recognition Domain, CRD),氨基酸序列上第49、125、141、149位置上的半胱氨酸参与形成糖识别结构域,而位于N末端的第21和32位上的两个半胱胺酸形成额外的一个二硫键,位于115、116和117上的Glu、Pro、Asp则构成了糖识别位点。 将编码CfLec-2成熟肽段的cDNA序列克隆进pET32a(+)载体中,并在大肠杆菌Rosetta-gami(DE3)中重组表达CfLec-2。重组蛋白利用其具有的His tag纯化并复性后发现CfLec-2可以凝集溶血葡萄球菌,且凝集过程不需要钙离子的参与。并且,CfLec-2对大肠杆菌TOP10F’有微弱的抑菌活性,对溶壁微球菌、溶血葡萄球菌和鳗弧菌则没有抑菌活性。这一结果说明,CfLec-2可能不仅参与对入侵微生物的识别过程,而且可能作为效应分子起到了直接杀灭入侵微生物的作用。 本研究发现CfLec-2具有和以前在栉孔扇贝报道的CFLec-1完全不同的功 能,说明栉孔扇贝利用不同的凝集素来识别不同的病原,同时也暗示栉孔扇贝中可能有更多不同功能的凝集素有待发现。研究结果丰富和发展了海水无脊椎动物免疫学的内容,对进一步了解扇贝固有免疫的机制,实现养殖扇贝疾病防治具有重要参考价值。
Resumo:
Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation: cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms Caused by two species in the Yangtze River Estuary. (C) 2008 Elsevier B.V. All rights reserved.