985 resultados para Capitalisme maritime
Resumo:
New Zealand has a good Neogene plant fossil record. During the Miocene it was without high topography and it was highly maritime, meaning that its climate, and the resulting vegetation, would be controlled dominantly by zonal climate conditions. Its vegetation record during this time suggests the climate passed from an ever-wet and cool but frostless phase in the Early Miocene in which Nothofagus subgenus Brassospora was prominent. Then it became seasonally dry, with vegetation in which palms and Eucalyptus were prominent and fires were frequent, and in the mid-Miocene, it developed a dry-climate vegetation dominated by Casuarinaceae. These changes are reflected in a sedimentological change from acidic to alkaline chemistry and the appearance of regular charcoal in the record. The vegetation then changed again to include a prominent herb component including Chenopodiaceae and Asteraceae. Sphagnum became prominent, and Nothofagus returned, but mainly as the subgenus Fuscospora (presently restricted to temperate climates). This is interpreted as a return to a generally wet, but now cold climate, in which outbreaks of cold polar air and frost were frequent. The transient drying out of a small maritime island and the accompanying vegetation/climate sequence could be explained by a higher frequency of the Sub-Tropical High Pressure (STHP) cells (the descending limbs of the Hadley cells) over New Zealand during the Miocene. This may have resulted from an increased frequency of 'blocking', a synoptic situation which occurs in the region today. An alternative hypothesis, that the global STHP belt lay at a significantly higher latitude in the early Neogene (perhaps 55degreesS) than today (about 30degreesS), is considered less likely because of physical constraints on STHP belt latitude. In either case, the difference between the early Neogene and present situation may have been a response to an increased polar-equatorial temperature gradient. This contrasts with current climate models for the geological past in which the latitude of the High Pressure belt impact is held invariant though geological time. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
On 2 November 2001, the General Assembly of the United Nations Scientific, Economic and Cultural Organisation (UNESCO) adopted the convention on the Protection of the Underwater Cultural Heritage. Among the many complex issues addressed in the convention is the legal status of sunken state-owned vessels, including warships. Prior to the adoption of this convention, no conventional or customary international law existed with regards to the question of abandonment of state-owned vessels or the application of the principle of sovereign immunity to sunken state vessels. While difficulties between coastal states and maritime and former colonial powers resulted in a regime that does not comprehensively address the issues, the convention does provide some guidance in this regard and may provide a basis for further development.
Resumo:
Many organisations need to extract useful information from huge amounts of movement data. One example is found in maritime transportation, where the automated identification of a diverse range of traffic routes is a key management issue for improving the maintenance of ports and ocean routes, and accelerating ship traffic. This paper addresses, in a first stage, the research challenge of developing an approach for the automated identification of traffic routes based on clustering motion vectors rather than reconstructed trajectories. The immediate benefit of the proposed approach is to avoid the reconstruction of trajectories in terms of their geometric shape of the path, their position in space, their life span, and changes of speed, direction and other attributes over time. For clustering the moving objects, an adapted version of the Shared Nearest Neighbour algorithm is used. The motion vectors, with a position and a direction, are analysed in order to identify clusters of vectors that are moving towards the same direction. These clusters represent traffic routes and the preliminary results have shown to be promising for the automated identification of traffic routes with different shapes and densities, as well as for handling noise data.