960 resultados para Calibration curves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantified organic-walled dinoflagellate cyst (dinocyst) assemblages are presented for two sedimentary successions deposited in neritic environments of the Tethys Ocean during the Barremian and Aptian in an attempt to reconcile established dinocyst biostratigraphic schemes for Tethyan and Austral regions. One section is at Angles, southeast France (the Barremian stratotype section); the other is at Deep Sea Drilling Project Site 263, off northwest Australia. We also construct a carbon isotope record for Site 263 using bulk organic carbon. Both sections contain abundant, well-preserved dinocyst assemblages. These are diverse, with 89 taxa identified at Angles and 103 taxa identified at Site 263. Of these, more than 93% are cosmopolitan. When combined with other work at Angles and Site 263, we found that nine dinocysts have their first occurrence (FO) or last occurrence (LO) at both locations. These dinocyst events are, in alphabetical order: LO of Cassiculosphaeridia magna, FO of Criboperidinium? tenuiceras, LO of Kleithriasphaeridium fasciatum, LO of Muderongia staurota, FO of Odontochitina operculata, LO of Phoberocysta neocomica, FO of Prolixosphaeridium parvispinum, FO of Pseudoceratium retusum var. securigerum, and FO of Tehamadinium sousense. Although these events support a Barremian-Aptian age for both sections, their stratigraphic order is not the same in the sections. The d13Corg record at Site 263 displays a characteristic series of changes that have also been recorded in other carbon isotope curves spanning the Late Barremian-Early Aptian. Such independent dating (along with ammonite zones at Angles) suggests that three of the nine dinocyst events are approximately isochronous at Angles and Site 263: the LO of K. fasciatum in the mid Barremian, the FO of P. retusum var. securigerum and the FO of C.? tenuiceras in the earliest Aptian; the other six dinocyst events are diachronous. Dinocyst assemblages at Site 263 can be loosely placed within existing Australian zonation schemes, providing much-needed calibration. Our data suggest that the Muderongia testudinaria Zone ends in sediments of mid Barremian age, the succeeding Muderongia australis Zone extends into the Early Aptian, and the younger Odontochitina operculata Zone begins in Early Aptian deposits. The boundary between the M. australis and O. operculata zones, and the Ovoidinium cinctum (as Ascodinium) Subzone, positioned at the top of the M. australis Zone when present, could not be recognized incontrovertibly. Interestingly, however, this horizon broadly correlates with the onset and extent of the Selli Event, a time of major biogeochemical change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of ~400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of ~2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiversity estimates through geological times are difficult because of taphonomic perturbations that affect sedimentary records. Pristine shell assemblages, however, allow for calibration of past diversity. Diversity structures of two exceptionally preserved Miocene bivalve assemblages are quantitatively determined, compared with recent communities and used as paleoenvironmental proxy. The extremely rich assemblages were collected in Aquitanian (Early Miocene) carbonate sands of the Vives Quarry (Meilhan, SW France). Both paleontological and sedimentological data indicate a coral patch-reef environment, which deposits were affected by transport processes. Among two samples more than 28.000 shells were counted and 135 species identified. Sample Vives 1 is interpreted as a proximal debris flow and Sample Vives 2 as a sandy shoreface/foreshore environment influenced by storms. The two Vives assemblages have a similar diversity structure despite facies differences. Rarefaction curves level off at ~600 shells. The rare species account for more than 80 % of the species pool. The high values of PIE diversity index suggest a relatively high species richness and an even distribution of abundance of the most common species within the assemblages. The fossil data are compared to death shell assemblages (family level) of a modern reefal setting (Touho area, New Caledonia). The shape of the rarefaction curves and PIE indices of Meilhan fossil assemblages compare well to modern data, especially those of deep (>10 m water depth), sandy depositional environments found downward the reef slope (slope and pass settings). In addition to primary ecological signals, the similarity of the Vives samples and the Recent deep samples derives from taphonomic processes. This assumption is supported by sedimentological and paleontological observations. Sediment transports gather allochthonous and in situ materials leading to mixing of various ecological niches. Such taphonomic processes are recorded in the diversity metrics. Environmental mixing and time-averaging of the shell assemblages disturb the preservation of local-scale diversity properties but favour the sampling of the regional-scale diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.

Relevância:

20.00% 20.00%

Publicador: