976 resultados para COPPER(II) DINUCLEAR COMPLEXES
Resumo:
Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.
Resumo:
The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)2(μ4-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.
Resumo:
Microwave assisted synthesis of the Cu(I) compound [Cu(µ4-4-ptz)]n [1, 4-ptz = 5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu3(µ3-4-ptz)4(µ2-N3)2(DMF)2]n∙(DMF)2n (2) and [Cu(µ2-4-ptz)2(H2O)2]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H2O2) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h−1), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The application of click chemistry to develop libraries of organometallic ruthenium-arene complexes with potential anticancer properties has been investigated. A series of ruthenium-imidazole-triazole complexes, with hydrophobic tails, were prepared from a common precursor via click chemistry. The tail could be attached to the ligand prior to coordination to the ruthenium complex were screened for cytotoxicity in tumourigenic and non-tumourigenic cell lines, and while the compounds were only moderately cytotoxic, good selectivity for tumourigenic cells were abserved.
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.
Resumo:
MHC class II-peptide multimers are important tools for the detection, enumeration and isolation of antigen-specific CD4+ Τ cells. However, their erratic and often poor performance impeded their broad application and thus in-depth analysis of key aspects of antigen-specific CD4+ Τ cell responses. In the first part of this thesis we demonstrate that a major cause for poor MHC class II tetramer staining performance is incomplete peptide loading on MHC molecules. We observed that peptide binding affinity for "empty" MHC class II molecules poorly correlates with peptide loading efficacy. Addition of a His-tag or desthiobiotin (DTB) at the peptide N-terminus allowed us to isolate "immunopure" MHC class II-peptide monomers by affinity chromatography; this significantly, often dramatically, improved tetramer staining of antigen-specific CD4+ Τ cells. Insertion of a photosensitive amino acid between the tag and the peptide, permitted removal of the tag from "immunopure" MHC class II-peptide complex by UV irradiation, and hence elimination of its potential interference with TCR and/or MHC binding. Moreover, to improve loading of self and tumor antigen- derived peptides onto "empty" MHC II molecules, we first loaded these with a photocleavable variant of the influenza A hemagglutinin peptide HA306-318 and subsequently exchanged it with a poorly loading peptide (e.g. NY-ESO-1119-143) upon photolysis of the conditional ligand. Finally, we established a novel type of MHC class II multimers built on reversible chelate formation between 2xHis-tagged MHC molecules and a fluorescent nitrilotriacetic acid (NTA)-containing scaffold. Staining of antigen-specific CD4+ Τ cells with "NTAmers" is fully reversible and allows gentle cell sorting. In the second part of the thesis we investigated the role of the CD8α transmembrane domain (TMD) for CD8 coreceptor function. The sequence of the CD8α TMD, but not the CD8β TMD, is highly conserved and homodimerizes efficiently. We replaced the CD8α TMD with the one of the interleukin-2 receptor a chain (CD8αTac) and thus ablated CD8α TMD interactions. We observed that ΤΙ Τ cell hybridomas expressing CD8αTacβ exhibited severely impaired intracellular calcium flux, IL-2 responses and Kd/PbCS(ABA) P255A tetramer binding. By means of fluorescence resonance energy transfer experiments (FRET) we established that CD8αTacβ associated with TCR:CD3 considerably less efficiently than CD8αβ, both in the presence and the absence of Kd/PbCS(ABA) complexes. Moreover, we observed that CD8αTacβ partitioned substantially less in lipid rafts, and related to this, associated less efficiently with p56Lck (Lck), a Src kinase that plays key roles in TCR proximal signaling. Our results support the view that the CD8α TMD promotes the formation of CD8αβP-CD8αβ dimers on cell surfaces. Because these contain two CD8β chains and that CD8β, unlike CD8α, mediates association of CD8 with TCR:CD3 as well as with lipid rafts and hence with Lck, we propose that the CD8αTMD plays an important and hitherto unrecognized role for CD8 coreceptor function, namely by promoting CD8αβ dimer formation. We discuss what implications this might have on TCR oligomerization and TCR signaling. - Les multimères de complexes MHC classe II-peptide sont des outils importants pour la détection, le dénombrement et l'isolation des cellules Τ CD4+ spécifiques pour un antigène d'intérêt. Cependant, leur performance erratique et souvent inadéquate a empêché leur utilisation généralisée, limitant ainsi l'analyse des aspects clés des réponses des lymphocytes Τ CD4+. Dans la première partie de cette thèse, nous montrons que la cause principale de la faible efficacité des multimères de complexes MHC classe II-peptide est le chargement incomplet des molécules MHC par des peptides. Nous montrons également que l'affinité du peptide pour la molécule MHC classe II "vide" n'est pas nécessairement liée au degré du chargement. Grâce à l'introduction d'une étiquette d'histidines (His-tag) ou d'une molécule de desthiobiotine à l'extrémité N-terminale du peptide, des monomères MHC classe II- peptide dits "immunopures" ont pu être isolés par chromatographic d'affinité. Ceci a permis d'améliorer significativement et souvent de façon spectaculaire, le marquage des cellules Τ CD4+ spécifiques pour un antigène d'intérêt. L'insertion d'un acide aminé photosensible entre l'étiquette et le peptide a permis la suppression de l'étiquette du complexe MHC classe- Il peptide "immunopure" par irradiation aux UV, éliminant ainsi de potentielles interférences de liaison au TCR et/ou au MHC. De plus, afin d'améliorer le chargement des molécules MHC classe II "vides" avec des peptides dérivés d'auto-antigènes ou d'antigènes tumoraux, nous avons tout d'abord chargé les molécules MHC "vides" avec un analogue peptidique photoclivable issu du peptide HA306-318 de l'hémagglutinine de la grippe de type A, puis, sous condition de photolyse, nous l'avons échangé avec de peptides à chargement faible (p.ex. NY-ESO-1119-143). Finalement, nous avons construit un nouveau type de multimère réversible, appelé "NTAmère", basé sur la formation chélatante reversible entre les molécules MHC-peptide étiquettés par 2xHis et un support fluorescent contenant des acides nitrilotriacetiques (NTA). Le marquage des cellules Τ CD4+ spécifiques pour un antigène d'intérêt avec les "NTAmères" est pleinement réversible et permet également un tri cellulaire plus doux. Dans la deuxième partie de cette thèse nous avons étudié le rôle du domaine transmembranaire (TMD) du CD8α pour la fonction coréceptrice du CD8. La séquence du TMD du CD8α, mais pas celle du TMD du CD8β, est hautement conservée et permet une homodimérisation efficace. Nous avons remplacé le TMD du CD8α avec celui de la chaîne α du récepteur à l'IL-2 (CD8αTac), éliminant ainsi les interactions du TMD du CD8α. Nous avons montré que les cellules des hybridomes Τ T1 exprimant le CD8αTacβ présentaient une atteinte sévère du flux du calcium intracellulaire, des réponses d'IL-2 et de la liaison des tétramères Kd/PbCS(ABA) P255A. Grâce aux expériences de transfert d'énergie entre molécules fluorescentes (FRET), nous avons montré que l'association du CD8αTacβ avec le TCR:CD3 est considérablement moins efficace qu'avec le CD8αβ, et ceci aussi bien en présence qu'en absence de complexes Kd/PbCS(ABA). De plus, nous avons observé que le CD8αTacβ se distribuait beaucoup moins bien dans les radeaux lipidiques, engendrant ainsi, une association moins efficace avec p56Lck (Lck), une kinase de la famille Src qui joue un rôle clé dans la signalisation proximale du TCR. Nos résultats soutiennent l'hypothèse que le TMD du CD8αβ favorise la formation des dimères de CD8αβ à la surface des cellules. Parce que ces derniers contiennent deux chaînes CD8β et que CD8β, contrairement à CD8α, favorise l'association du CD8 au TCR:CD3 aussi bien qu'aux radeaux lipidiques et par conséquent à Lck, nous proposons que le TMD du CD8α joue un rôle important, jusqu'alors inconnu, pour la fonction coreceptrice du CD8, en encourageant la formation des dimères CD8αβ. Nous discutons des implications possibles sur l'oligomerisation du TCR et la signalisation du TCR.
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.
Resumo:
Dans certaines conditions pathologiques, telles que l'hypertension artérielle ou l'infarctus du myocarde, le coeur répond à une augmentation de la post-charge par des processus de remodelage aboutissant à une hypertrophie du ventricule gauche. L'hypertrophie cardiaque est caractérisée par une croissance hypertrophique des cardiomyocytes, ainsi que par une différenciation des fibroblastes en un phenotype présentant une capacité accrue de synthèse protéiques, nommés myofibroblastes. Ceci résulte en une accumulation excessive des constituants de la matrice extracellulaire, ou autrement dit fibrose. En raison de son effet délétère sur la contractilité du coeur, menant sur le long terme à une insuffisance cardiaque, de nombreux efforts ont été déployés, afin de définir les mécanismes moléculaires impliqués dans la réponse profibrotique. A ce jour, de nombreuses études indiquent que la petite GTPase RhoA pourrait être un médiateur important de la réponse profibrotique du myocarde. Cependant, les facteurs d'échanges impliqués dans la transduction de signaux profibrotiques, via la régulation de son activité au niveau des fibroblastes cardiaques, n'ont pas encore été identifiés. De précédentes études menées dans le laboratoire, ont identifiées une nouvelle protein d'ancrage de la PKA, exprimée majoritairement dans le coeur, nommée AKAP-Lbc. Il a été montré que cette protéine, en plus de sa fonction de protein d'ancrage, possédait une activité de facteur d'échange de nucléotide guanine (GEF) pour la petite GTPase RhoA. Au niveau des cardiomyocytes, il a été montré que l'AKAP-Lbc participe à une voie de signalisation pro-hypertrophique, incluant la sous-unité alpha de la protéine G hétérotrimerique G12 et RhoA. Chose intéressante, des observations antérieures à cette étude, indiquent que dans le coeur, l'AKAP-Lbc est également exprimée dans les fibroblastes. Cependant aucunes études n'a encore reporté de fonction pour ce facteur d'échange dans les fibroblastes cardiaques. Dans ce travail, les résultats obtenus indiquent que dans les fibroblastes cardiaques, I'activation de RhoA par l'AKAP-Lbc est impliquée dans la transmission de signaux profibrotiques, en aval des récépteurs à l'angiotensine II. En particulier, nous avons observé que la suppression de l'expression de l'AKAP-Lbc dans les fibroblastes ventriculaires de rat adultes, réduisait fortement Γ activation de Rho induite par l'angiotensine II, la déposition de collagène, la capacité migratoire des fibroblastes ainsi que leur différenciation en myofibroblastes. A notre connaissance, l'AKAP-Lbc est le premier RhoGEF identifié comme médiateur de la réponse profibrotique dans les fibroblastes cardiaques. - In pathological conditions such as chronic hypertension or myocardial infarction, the myocardium is subjected to various biomechanical and biochemical stresses, and undergoes an adverse ventricular remodelling process associated with cardiomyocytes hypertrophy and excess deposition of extracellular matrix proteins resulting in fibrosis. During the fibrotic response, cardiac fibroblasts differentiate into a more mobile and contractile phenotype termed myofibroblasts. These cells, possess a greater synthetic ability to produce ECM proteins and have been implicated in diseases with increased ECM deposition including cardiac fibrosis. Because fibrosis impairs myocardial contractility and is associated with the progression to heart failure, a major cause of lethality worldwide, many efforts have been made to define the molecular players involved in this process. During these last years, increasing evidence suggests a role for the small GTPase RhoA in mediating the fibrotic response in CFbs. However the identity of the exchange factors that modulate its activity and transduce fibrotic signals in CFbs is still unknown. Earlier work in our laboratory identified a novel PKA anchoring protein expressed in the heart termed AKAP-Lbc that has been shown to function as anchoring protein as well as a guanine nucleotide exchange factor (GEF) for the small GTPase RhoA. In response to several hypertrophic stimuli we have shown that RhoGEF activity of AKAP-Lbc mediated by Gan promotes the activation of a signaling pathway including RhoA, leading to cardiomyocytes hypertrophy. Within the heart, previous observations made in the laboratory indicated that AKAP-Lbc was also expressed in fibroblasts. However its role in cardiac fibroblasts remained to be determined. In the present study, we show that AKAP-Lbc is critical for activating RhoA and transducing profibrotic signals downstream of angiotensin II receptors in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin RNAs strongly reduces angiotensin II-induced RhoA activation, collagen deposition as well as cell migration and differentiation. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor involved in a profibrotic signalling pathway at the level of cardiac fibroblasts.
Resumo:
Phosphopeptides tagging reactions by dinuclear zinc(II) complexes (1,3-bis[bis(2-pyridylmethyl)amino]-propan-2-olato dizinc(II)3+, called tag) were performed with a dual-channel microsprayer in electrospray ionization mass spectrometry. The reaction is first studied ex situ and analyzed with a commercial electrospray source. In situ reactions (i.e., inside the Taylor cone) were achieved with a dual-channel microsprayer both with the tag synthesized chemically before the experiments and with the tag electrogenerated by in situ oxidation of a zinc electrode, also used to apply the electrospray current. The device consists of a polyimide microchip with two microchannels (20 microm x 50 microm x 1 cm) etched on each side of the structure and connecting only at the tip of the microchip. We demonstrate here that mixing two solutions with different physicochemical properties inside the Taylor cone can be used to selectively tag target molecules.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.