985 resultados para CONTRAST-ENHANCED MRI
Resumo:
Anti-CTLA-4 treatment improves the survival of patients with advanced-stage melanoma. However, although the anti-CTLA-4 antibody ipilimumab is now an approved treatment for patients with metastatic disease, it remains unknown by which mechanism it boosts tumor-specific T cell activity. In particular, it is unclear whether treatment amplifies previously induced T cell responses or whether it induces new tumor-specific T cell reactivities. Using a combination ultraviolet (UV)-induced peptide exchange and peptide-major histocompatibility complex (pMHC) combinatorial coding, we monitored immune reactivity against a panel of 145 melanoma-associated epitopes in a cohort of patients receiving anti-CTLA-4 treatment. Comparison of pre- and posttreatment T cell reactivities in peripheral blood mononuclear cell samples of 40 melanoma patients demonstrated that anti-CTLA-4 treatment induces a significant increase in the number of detectable melanoma-specific CD8 T cell responses (P = 0.0009). In striking contrast, the magnitude of both virus-specific and melanoma-specific T cell responses that were already detected before start of therapy remained unaltered by treatment (P = 0.74). The observation that anti-CTLA-4 treatment induces a significant number of newly detected T cell responses-but only infrequently boosts preexisting immune responses-provides strong evidence for anti-CTLA-4 therapy-enhanced T cell priming as a component of the clinical mode of action.
Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor
Resumo:
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Resumo:
Purpose: To compare entero-MDCT with entero-MRI performed for suspicion of acute exacerbation of known Crohn's disease. Methods and Materials: Fifty-seven patients (mean age 33.5) with histologically proven Crohn's disease were prospectively included. They presented with clinical symptoms suggesting acute exacerbation to the emergency department. After oral administration of 1-2 l of 5% methylcellulosis (+syrup), entero-MDCT and entero- MRI were performed on each patient (mean delay 1 day). Three experienced radiologists blindly and independently evaluated each examination for technical quality, eight pathological CT features (bowel wall thickening, pathological wall enhancement, stenosis, lymphadenopathy, mesenteric haziness, intraperitoneal fluid, abscess, fistula) and final main diagnosis. Interobserver agreement kappa was calculated. Sensitivity and specificity resulted from comparison with the reference standard, consisting of operation (n= 30) and long-time follow-up in case of conservative treatment (n=27). Results: Entero-MDCT demonstrated considerably less artefacts than entero-MRI (p 0.0001). In 9 entero-MDCT/-MRI, no activity of Crohn's disease was seen, whereas in 48 entero-MDCT/-MRI active disease could be demonstrated, such as intraperitoneal abscesses (n=11), fistulas (n=13), stenoses (n=23), acute (n=15) or chronic (n=23) inflammation. Interobserver agreement of the three readers was not significantly different between entero-MDCT and -MRI, neither was sensitivity (range 60-89%) and specificity (range 75-100%) for each of the eight pathological features or for the main diagnosis. Conclusion: Entero-MRI is statistically of similar diagnostic value as entero-MDCT for acute complications of Crohn's disease. Therefore, entero-IRM, devoid of harmful irradiation, should become the preferred imaging modality, since we deal with young patients, very likely exposed to frequent imaging controls in the future.
Resumo:
OBJECTIVE: To determine the usefulness of computed tomography (CT), magnetic resonance imaging (MRI), and Doppler ultrasonography (US) in providing specific images of gouty tophi. METHODS: Four male patients with chronic gout with tophi affecting the knee joints (three cases) or the olecranon processes of the elbows (one case) were assessed. Crystallographic analyses of the synovial fluid or tissue aspirates of the areas of interest were made with polarising light microscopy, alizarin red staining, and x ray diffraction. CT was performed with a GE scanner, MR imaging was obtained with a 1.5 T Magneton (Siemens), and ultrasonography with colour Doppler was carried out by standard technique. RESULTS: Crystallographic analyses showed monosodium urate (MSU) crystals in the specimens of the four patients; hydroxyapatite and calcium pyrophosphate dihydrate (CPPD) crystals were not found. A diffuse soft tissue thickening was seen on plain radiographs but no calcifications or ossifications of the tophi. CT disclosed lesions containing round and oval opacities, with a mean density of about 160 Hounsfield units (HU). With MRI, lesions were of low to intermediate signal intensity on T(1) and T(2) weighting. After contrast injection in two cases, enhancement of the tophus was seen in one. Colour Doppler US showed the tophi to be hypoechogenic with peripheral increase of the blood flow in three cases. CONCLUSION: The MR and colour Doppler US images showed the tophi as masses surrounded by a hypervascular area, which cannot be considered as specific for gout. But on CT images, masses of about 160 HU density were clearly seen, which correspond to MSU crystal deposits.
Resumo:
PURPOSE: Apoptotic arterial wall vascular smooth muscle cell death is known to contribute to plaque vulnerability and rupture. Novel apoptotic markers like apolipoprotein C-I have been implicated in apoptotic human vascular smooth muscle cell death via recruiting a neutral sphingomyelinase (N-SMase)-ceramide pathway. In vivo relevance of these observations in an animal model of plaque rupture has not been shown. METHODS AND RESULTS: Using Watanabe rabbits, we investigated three different groups (group 1, three normal Watanabe rabbits; group 2, six Watanabe rabbits fed with high cholesterol diet for 3 months; group 3, five Watanabe rabbits with similar diet but additional endothelial denudation). We followed progression of atherosclerosis to pharmacologically induced plaque rupture non-invasively using novel 3D magnetic resonance Fast-Field-Echo angiography (TR=7.2, TE=3.6 ms, matrix=512 x 512) and Fast-Spin-Echo vessel wall imaging methods (TR=3 heart beats, TE=10.5 ms, matrix=304 x 304) on 1.5 T MRI. MRI provided excellent image quality with good MRI versus histology vessel wall thickness correlation (r=0.8). In six animals of group 2/3 MRI detected neo-intimal dissection in the abdominal aorta which was accompanied by immuno-histochemical demonstration of concomitant aforementioned novel apoptotic markers, previously implicated in the apoptotic smooth muscle cell death in vitro. CONCLUSIONS: Our studies suggest a potential role for the signal transduction pathway involving apolipoprotein C-I for in vivo apoptosis and atherosclerotic plaque rupture visualized by MRI.
Resumo:
Retinoblastoma is the most common intraocular tumor in children. The diagnosis is usually established by the ophthalmologist on the basis of fundoscopy and US. Together with US, high-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e. for diagnostic confirmation, detection of local tumor extent, detection of associated developmental malformation of the brain and detection of associated intracranial primitive neuroectodermal tumor (trilateral retinoblastoma). Minimum requirements for pretreatment diagnostic evaluation of retinoblastoma or mimicking lesions are presented, based on consensus among members of the European Retinoblastoma Imaging Collaboration (ERIC). The most appropriate techniques for imaging in a child with leukocoria are reviewed. CT is no longer recommended. Implementation of a standardized MRI protocol for retinoblastoma in clinical practice may benefit children worldwide, especially those with hereditary retinoblastoma, since a decreased use of CT reduces the exposure to ionizing radiation.
Resumo:
BACKGROUND: This review aims to present a consensus for optimal perioperative care in colonic surgery and to provide graded recommendations for items for an evidenced-based enhanced perioperative protocol. METHODS: Studies were selected with particular attention paid to meta-analyses, randomised controlled trials and large prospective cohorts. For each item of the perioperative treatment pathway, available English-language literature was examined, reviewed and graded. A consensus recommendation was reached after critical appraisal of the literature by the group. RESULTS: For most of the protocol items, recommendations are based on good-quality trials or meta-analyses of good-quality trials (quality of evidence and recommendations according to the GRADE system). CONCLUSIONS: Based on the evidence available for each item of the multimodal perioperative care pathway, the Enhanced Recovery After Surgery (ERAS) Society, International Association for Surgical Metabolism and Nutrition (IASMEN) and European Society for Clinical Nutrition and Metabolism (ESPEN) present a comprehensive evidence-based consensus review of perioperative care for colonic surgery.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations.
Resumo:
Résumé : Malgré les immenses progrès réalisés depuis plusieurs années en médecine obstétricale ainsi qu'en réanimation néonatale et en recherche expérimentale, l'asphyxie périnatale, une situation de manque d'oxygène autour du moment de la naissance, reste une cause majeure de mortalité et de morbidité neurologique à long terme chez l'enfant (retard mental, paralysie cérébrale, épilepsie, problèmes d'apprentissages) sans toutefois de traitement pharmacologique réel. La nécessité de développer de nouvelles stratégies thérapeutiques pour les complications de l'asphyxie périnatale est donc aujourd'hui encore essentielle. Le but général de ce travail est l'identification de nouvelles cibles thérapeutiques impliquées dans des mécanismes moléculaires pathologiques induits par l'hypoxie-ischémie (HI) dans le cerveau immature. Pour cela, le modèle d'asphyxie périnatale (proche du terme) le plus reconnu chez le rongeur a été développé (modèle de Rice et Vannucci). Il consiste en la ligature permanente d'une artère carotide commune (ischémie) chez le raton de 7 jours combinée à une période d'hypoxie à 8% d'oxygène. Il permet ainsi d'étudier les lésions de type hypoxique-ischémique dans différentes régions cérébrales dont le cortex, l'hippocampe, le striatum et le thalamus. La première partie de ce travail a abordé le rôle de deux voies de MAPK, JNK et p38, après HI néonatale chez le raton à l'aide de peptides inhibiteurs. Tout d'abord, nous avons démontré que D-JNKI1, un peptide inhibiteur de la voie de JNK présentant de fortes propriétés neuroprotectrices dans des modèles d'ischémie cérébrale adulte ainsi que chez le jeune raton, peut intervenir sur différentes voies de mort dont l'activation des calpaïnes (marqueur de la nécrose précoce), l'activation de la caspase-3 (marqueur de l'apoptose) et l'expression de LC3-II (marqueur de macroautophagie). Malgré ces effets positifs le traitement au D-JNKI1 ne modifie pas l'étendue de la lésion cérébrale. L'action limitée de D-JNKI1 peut s'expliquer par une implication modérée des JNKs (faiblement activées et principalement l'isotype JNK3) après HI néonatale sévère. Au contraire, l'inhibition de la voie de nNOS/p38 par le peptide DTAT-GESV permet une augmentation de 20% du volume du tissu sain à court et long terme. Le second projet a étudié les effets de l'HI néonatale sur l'autophagie neuronale. En effet, l'autophagie est un processus catabolique essentiel au bien-être de la cellule. Le type principal d'autophagie (« macroautophagie » , que nous appellerons par la suite « autophagie ») consiste en la séquestration d'éléments à dégrader (protéines ou organelles déficients) dans un compartiment spécialisé, l'autophagosome, qui fusionne avec un lysosome pour former un autolysosome où le contenu est dégradé par les hydrolases lysosomales. Depuis peu, l'excès ou la dérégulation de l'autoptiagie a pu être impliqué dans la mort cellulaire en certaines conditions de stress. Ce travail démontre que l'HI néonatale chez le raton active fortement le flux autophagique, c'est-à-dire augmente la formation des autophagosomes et des autolysosomes, dans les neurones en souffrance. De plus, la relation entre l'autophagie et l'apoptose varie selon la région cérébrale. En effet, alors que dans le cortex les neurones en voie de mort présentent des caractéristiques mixtes apoptotiques et autophagiques, ceux du CA3 sont essentiellement autophagiques et ceux du CA1 sont principalement apoptotiques. L'induction de l'autophagie après HI néonatale semble donc participer à la mort neuronale soit par l'enclenchement de l'apoptose soit comme mécanisme de mort en soi. Afin de comprendre la relation pouvant exister entre autophagie et apoptase un troisième projet a été réalisé sur des cultures primaires de neurones corticaux exposés à un stimulus apoptotique classique, la staurosporine (STS). Nous avons démontré que l'apoptose induite par la STS était précédée et accompagnée par une forte activation du flux autophagique neuronal. L'inhibition de l'autophagie de manière pharmacologique (3-MA) ou plus spécifiquement par ARNs d'interférence dirigés contre deux protéines autophagiques importantes (Atg7 et Atg5) a permis de mettre en évidence des rôles multiples de l'autophagie dans la mort neuronale. En effet, l'autophagie prend non seulement part à une voie de mort parallèle à l'apoptose pouvant être impliquée dans l'activation des calpaïnes, mais est également partiellement responsable de l'induction des voies apoptotiques (activation de la caspase-3 et translocation nucléaire d'AIF). En conclusion, ce travail a montré que l'inhibition de JNK par D-JNKI1 n'est pas un outil neuroprotecteur efficace pour diminuer la mort neuronale provoquée par l'asphyxie périnatalé sévère, et met en lumière deux autres voies thérapeutiques beaucoup plus prometteuses, l'inhibition de nNOS/p38 ou de l'autophagie. ABSTRACT : Despite enormous progress over the last«decades in obstetrical and neonatal medicine and experimental research, perinatal asphyxia, a situation of lack of oxygen around the time of the birth, remains a major cause of mortality and long term neurological morbidity in children (mental retardation, cerebral palsy, epilepsy, learning difficulties) without any effective treatment. It is therefore essential to develop new therapeutic strategies for the complications of perinatal asphyxia. The overall aim of this work was to identify new therapeutic targets involved in pathological molecular mechanisms induced by hypoxia-ischemia (HI) in the immature brain. For this purpose, the most relevant model of perinatal asphyxia (near term) in rodents has been developed (model of Rice and Vannucci). It consists in the permanent ligation of one common carotid artery (ischemia) in the 7-day-old rat combined with a period of hypoxia at 8% oxygen. This model allows the study of the hypoxic-ischemic lesion in different brain regions including the cortex, hippocampus, striatum and thalamus. The first part of this work addressed the role of two MAPK pathways (JNK and p38) after rat neonatal HI using inhibitory peptides. First, we demonstrated that D-JNKI1, a JNK peptide inhibitor presenting strong neuroprotective properties in models of cerebral ischemia in adult and young rats, could affect different cell death mechanisms including the activation of calpain (a marker of necrosis) and caspase-3 (a marker of apoptosis), and the expression of LC3-II (a marker of macroautophagy). Despite these positive effects, D-JNKI1 did not modify the extent of brain damage. The limited action of D-JNKI1 can be explained by the fact that JNKs were only moderately involved (weakly activated and principally the JNK3 isotype) after severe neonatal HI. In contrast, inhibition of nNOS/p38 by the peptide D-TAT-GESV increased the surviving tissue volume by around 20% at short and long term. The second project investigated the effects of neonatal HI on neuronal autophagy. Indeed, autophagy is a catabolic process essential to the well-being of the cell. The principal type of autophagy ("macroautophagy", that we shall henceforth call "autophagy") involves the sequestration of elements to be degraded (deficient proteins or organelles) in a specialized compartment, the autophagosome, which fuses with a lysosome to form an autolysosome where the content is degraded by lysosomal hydrolases. Recently, an excess or deregulation of autophagy has been implicated in cell death in some stress conditions. The present study demonstrated that rat neonatal HI highly enhanced autophagic flux, i.e. increased autophagosome and autolysosome formation, in stressed neurons. Moreover, the relationship between autophagy and apoptosis varies according to the brain region. Indeed, whereas dying neurons in the cortex exhibited mixed features of apoptosis and autophagy, those in CA3 were primarily autophagíc and those in CA1 were mainly apoptotic. The induction of autophagy after neonatal HI seems to participate in neuronal death either by triggering apoptosis or as a death mechanism per se. To understand the relationships that may exist between autophagy and apoptosis, a third project has been conducted using primary cortical neuronal cultures exposed to a classical apoptotic stimulus, staurosporine (STS). We demonstrated that STS-induced apoptosis was preceded and accompanied by a strong activation of neuronal autophagic flux. Inhibition of autophagy pharmacologically (3-MA) or more specifically by RNA interference directed against two important autophagic proteins (Atg7 and AtgS) showed multiple roles of autophagy in neuronal death. Indeed, autophagy was not only involved in a death pathway parallel to apoptosis possibly involved in the activation of calpains, but was also partially responsible for the induction of apoptotic pathways (caspase-3 activation and AIF nuclear translocation). In conclusion, this study showed that JNK inhibition by D-JNKI1 is not an effective neuroprotective tool for decreasing neuronal death following severe perinatal asphyxia, but highlighted two more promising therapeutic approaches, inhibition of the nNOSlp38 pathway or of autophagy.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
PURPOSE: To evaluate the utility of inversion recovery with on-resonant water suppression (IRON) in combination with injection of the long-circulating monocrystalline iron oxide nanoparticle (MION)-47 for contrast material-enhanced magnetic resonance (MR) angiography. MATERIALS AND METhods: Experiments were approved by the institutional animal care committee. Eleven rabbits were imaged at baseline before injection of a contrast agent and then serially 5-30 minutes, 2 hours, 1 day, and 3 days after a single intravenous bolus injection of 80 micromol of MION-47 per kilogram of body weight (n = 6) or 250 micromol/kg MION-47 (n = 5). Conventional T1-weighted MR angiography and IRON MR angiography were performed on a clinical 3.0-T imager. Signal-to-noise and contrast-to-noise ratios were measured in the aorta of rabbits in vivo. Venous blood was obtained from the rabbits before and after MION-47 injection for use in phantom studies. RESULTS: In vitro blood that contained MION-47 appeared signal attenuated on T1-weighted angiograms, while characteristic signal-enhanced dipolar fields were observed on IRON angiograms. In vivo, the vessel lumen was signal attenuated on T1-weighted MR angiograms after MION-47 injection, while IRON supported high intravascular contrast by simultaneously providing positive signal within the vessels and suppressing background tissue (mean contrast-to-noise ratio, 61.9 +/- 12.4 [standard deviation] after injection vs 1.1 +/- 0.4 at baseline, P < .001). Contrast-to-noise ratio was higher on IRON MR angiograms than on conventional T1-weighted MR angiograms (9.0 +/- 2.5, P < .001 vs IRON MR angiography) and persisted up to 24 hours after MION-47 injection (76.2 +/- 15.9, P < .001 vs baseline). CONCLUSION: IRON MR angiography in conjunction with superparamagnetic nanoparticle administration provides high intravascular contrast over a long time and without the need for image subtraction.