850 resultados para COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UILU-ENG 80 1704."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 48-49.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 41.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this thesis is concerned with the improvement and expansion of the assistance given to the designer by the computer in the design of cold formed sections. The main contributions have been in four areas, which have consequently led to the fifth, the development of a methodology to optimise designs. This methodology can be considered an `Expert Design System' for cold formed sections. A different method of determining section properties of profiles was introduced, using the properties of line and circular elements. Graphics were introduced to show the outline of the profile on screen. The analysis of beam loading has been expanded to beam loading conditions where the number of supports, point loads, and uniform distributive loads can be specified by the designer. The profile can then be checked for suitability for the specified type of loading. Artificial Intelligence concepts have been introduced to give the designer decision support from the computer, in combination with the computer aided design facilities. The more complex decision support was adopted through the use of production rules. All the support was based on the British standards. A method has been introduced, by which the appropriate use of stiffeners can be determined and consequently designed by the designer. Finally, the methodology by which the designer is given assistance from the computer, without constraining the designer, was developed. This methodology gives advice to the designer on possible methods of improving the design, but allows the designer to reject that option, and analyse the profile accordingly. The methodology enables optimisation to be achieved by the designer, designing variety of profiles for a particular loading, and determining which one is best suited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.