932 resultados para COMPUTED-TOMOGRAPHY
Resumo:
The aim of this study was to retrospectively evaluate in the casuistry on class and systems frequently diagnosed in wild animals that were sent to the FMVZ–UNESP-Botucatu diagnostic imaging service. The class of birds was the most referred to the centers, followed by the mammals and reptiles. The majority of the requested tests were the radiographs and in a minor scale the tomography and ultrasound. Although the birds were the greatest number of animals sent to the service, mammals were the most radiographed for wound control. The most frequently observed system was the musculoskeletal caused by trauma, especially in birds. The radiograph was the most exam initially indicated, then the animal could be forwarded to other imaging modalities, which in wild animals medicine is still limited to research.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nasal gliomas are rare benign congenital midline tumors composed of heterotopic neuroglial tissue. They have potential for intracranial extension through a bony defect in the skull base. Neuroimaging is essential for identifying nasal lesions and for determining their exact location and any possible intracranial extension. Computed tomography is often the initial imaging study obtained because it provides good visualization of the bony landmarks of the skull base; it is not, however, well suited for soft tissue imaging. Magnetic resonance imaging has better soft tissue resolution and may be the best initial study in patients seen early in life because the anterior skull base consists of an unossified cartilage and may falsely appear as if there is a bony dehiscence on computed tomography. A frontal craniotomy approach is recommended if intracranial extension is identified, followed by a transnasal endoscopic approach for intranasal glioma. A case is presented of a huge fetal facial mass that was shown by ultrasound that protruded through the left nostril at 33 weeks of gestation. Computed tomography of the neonate suggested a transethmoidal encephalocele. Magnetic resonance imaging showed a huge mass occupying the nasopharynx and the nasal cavity and protruding externally to the face but ruled out bony discontinuity in the skull base and, therefore, any intracranial connection. The infant underwent an endoscopic resection of the mass via oral and nasal routes and pathologic examination revealed intranasal glioma. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.
Resumo:
FUNDAMENTO: A redução da frequência cardíaca (FC) na angiografia por tomografia das artérias coronarianas (ATCCor) é fundamental para a qualidade de imagem. A eficácia dos bloqueadores de cálcio como alternativas para pacientes com contraindicações aos betabloqueadores não foi definida. OBJETIVOS: Comparar a eficácia na redução da FC e variabilidade RR do metoprolol e diltiazem na ATCCor. MÉTODOS: Estudo prospectivo, randomizado, aberto, incluiu pacientes com indicação clínica de ATCCor, em ritmo sinusal, com FC>70bpm e sem uso de agentes que interferissem com a FC. Cinquenta pacientes foram randomizados para grupos: metoprolol IV 5-15 mg ou até FC≤60 bpm(M), e diltiazem IV 0,25-0,60mg/kg ou até FC≤60 bpm (D). Pressão arterial (PA) e FC foram aferidas na condição basal, 1min, 3min e 5min após agentes, na aquisição e após ATCCor. RESULTADOS: A redução da FC em valores absolutos foi maior no grupo M que no grupo D (1, 3, 5min, aquisição e pós-exame). A redução percentual da FC foi significativamente maior no grupo M apenas no 1 min e 3 min após início dos agentes. Não houve diferença no 5 min, durante a aquisição e após exame. A variabilidade RR percentual do grupo D foi estatisticamente menor do que a do grupo M durante a aquisição (variabilidade RR/ FC média da aquisição). Um único caso de BAV, 2:1 Mobitz I, revertido espontaneamente ocorreu (grupo D). CONCLUSÃO: Concluímos que o diltiazem é uma alternativa eficaz e segura aos betabloqueadores na redução da FC na realização de angiografia por tomografia computadorizada das artérias coronarianas. (Arq Bras Cardiol. 2012; [online].ahead print, PP.0-0)
Resumo:
When dealing with surgical patients, a perioperative evaluation is essential to anticipate complications and institute measures to reduce the risks. Several algorithms and exams have been used to identify postoperative cardiovascular events, which account for more than 50% of perioperative mortality. However, they are far from ideal. Some of these algorithms and exams were proposed before important advances in cardiology, at a time when pharmacological risk reduction strategies for surgical patients were not available. New biomarkers and exams, such as C-reactive protein, brain natriuretic peptide, and multislice computed tomography have been used in cardiology and have provided important prognostic information. The ankle-brachial index is another significant marker of atherosclerosis. However, specific information regarding the perioperative context of all these methods is still needed. The objective of this article is to evaluate cardiovascular risk prediction models after noncardiac surgery.
Resumo:
Previous studies have reported increased cerebral blood flow (CBF) velocity after decompressive craniectomy in traumatic brain injury (TBI) patients. A 27-year-old man presented with clinical and tomographic signs of cerebral herniation secondary to TBI. Prior to decompressive craniectomy, hemodynamic study by perfusion computed tomography (CT) indicated diffuse cerebral hyperperfusion. Following surgical decompression, the patient recovered neurologically and perfusion CT disclosed a decrease in the intensity of cerebral perfusion. The patient's blood pressure levels were similar at both pre- and postoperative perfusion CT examinations. This finding provides indirect evidence that decompressive craniectomy may improve mechanisms of CBF regulation in TBI, providing pathophysiological insights in the cerebral hemodynamics of TBI patients. This is the first report analyzing the hemodynamic changes through perfusion CT (PCT) in a patient with decompressive craniotomy due to TBI. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper provides a brief but comprehensive guide to creating, preparing and dissecting a 'virtual' fossil, using a worked example to demonstrate some standard data processing techniques. Computed tomography (CT) is a 3D imaging modality for producing 'virtual' models of an object on a computer. In the last decade, CT technology has greatly improved, allowing bigger and denser objects to be scanned increasingly rapidly. The technique has now reached a stage where systems can facilitate large-scale, non-destructive comparative studies of extinct fossils and their living relatives. Consequently the main limiting factor in CT-based analyses is no longer scanning, but the hurdles of data processing (see disclaimer). The latter comprises the techniques required to convert a 3D CT volume (stack of digital slices) into a virtual image of the fossil that can be prepared (separated) from the matrix and 'dissected' into its anatomical parts. This technique can be applied to specimens or part of specimens embedded in the rock matrix that until now have been otherwise impossible to visualise. This paper presents a suggested workflow explaining the steps required, using as example a fossil tooth of Sphenacanthus hybodoides (Egerton), a shark from the Late Carboniferous of England. The original NHMUK copyrighted CT slice stack can be downloaded for practice of the described techniques, which include segmentation, rendering, movie animation, stereo-anaglyphy, data storage and dissemination. Fragile, rare specimens and type materials in university and museum collections can therefore be virtually processed for a variety of purposes, including virtual loans, website illustrations, publications and digital collections. Micro-CT and other 3D imaging techniques are increasingly utilized to facilitate data sharing among scientists and on education and outreach projects. Hence there is the potential to usher in a new era of global scientific collaboration and public communication using specimens in museum collections.