996 resultados para CO2 laser annealing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Avaliar se o tratamento das malformações vasculares venosas congênitas realizado com o emprego da tecnologia laser oferece clareamento ou desaparecimento das lesões com elevado grau de satisfação informado pelos pacientes e observado pelo médico. MÉTODOS: O estudo retrospectivo reuniu 26 pacientes, portadores de malformação vascular venosa, dos quais 73,07% eram do sexo feminino e que foram tratados com o aparelho PhotoDerm®. O tratamento das malformações vasculares necessitou uma média de 6,43 sessões, com intervalos de seis a oito semanas. Os pacientes incluídos neste estudo apresentavam pele tipo II (57,40%) e tipo III (42,30%), conforme classificação de Fitzpatric. A idade média variou de 14 a 61 anos, com média de 36,70 anos. Os dados foram obtidos através do preenchimento de protocolo informado pelo paciente. RESULTADOS: Foi informado elevado grau de satisfação (96,16%) e apenas um caso (3,84%) parcialmente satisfeito, considerando o clareamento ou desaparecimento das lesões. Houve desaparecimento das lesões avaliado pelo profissional médico em 80,76% dos casos e em 19,24% apenas clareamento. CONCLUSÃO: O tratamento das malformações vasculares venosas com o Photo-Derm® é seguro e eficiente tendo proporcionado elevado grau de satisfação dos pacientes assim como bons resultados em relação ao desaparecimento das lesões.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Avaliar os efeitos da infiltração de dióxido de carbono em adipócitos presentes na parede abdominal. MÉTODOS: Quinze voluntárias foram submetidas a sessões de infusão de CO2 durante três semanas consecutivas (duas sessões por semana com intervalos de dois a três dias entre cada sessão). O volume de gás carbônico infundido por sessão, em pontos previamente demarcados, foi sempre calculado com base na superfície da área a ser tratada, com volume infundido fixo de 250 mL/100cm² de superfície tratada. Os pontos de infiltração foram demarcados respeitando-se o limite eqüidistante 2cm entre eles. Em cada ponto se injetou 10mL, por sessão, com fluxo de 80mL/min. Foram colhidos fragmentos de tecido celular subcutâneo da parede abdominal anterior antes e após o tratamento. O número e as alterações histomorfológicas dos adipócitos (diâmetro médio, perímetro, comprimento, largura e número de adipócitos por campos de observação) foram mensurados por citometria computadorizada. Os resultados foram analisados com o teste t de Student pareado, adotando-se nível de significância de 5% (p<0,05). RESULTADOS: Encontrou-se redução significativa no número de adipócitos da parede abdominal e na área, diâmetro, perímetro, comprimento e largura após o uso da hipercapnia (p=0,0001). CONCLUSÃO: A infiltração percutânea de CO2 reduz a população e modifica a morfologia dos adipócitos presentes na parede abdominal anterior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: to compare the effects of low intensity laser therapy on in vitro bacterial growth and in vivo in infected wounds, and to analyze the effectiveness of the AsGa Laser technology in in vivo wound infections. METHODS: in vitro: Staphylococcus aureus were incubated on blood agar plates, half of them being irradiated with 904 nm wavelength laser and dose of 3J/cm2 daily for seven days. In vivo: 32 male Wistar rats were divided into control group (uninfected) and Experimental Group (Infected). Half of the animals had their wounds irradiated. RESULTS: in vitro: there was no statistically significant variation between the experimental groups as for the source plates and the derived ones (p>0.05). In vivo: there was a significant increase in the deposition of type I and III collagen in the wounds of the infected and irradiated animals when assessed on the fourth day of the experiment (p=0.034). CONCLUSION: low-intensity Laser Therapy applied with a wavelength of 904nm and dose 3J/cm2 did not alter the in vitro growth of S. aureus in experimental groups; in vivo, however, it showed significant increase in the deposition of type I and III collagen in the wound of infected and irradiated animals on the fourth day of the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine.METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used.RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process.CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequestration of carbon dioxide in mineral rocks, also known as CO2 Capture and Mineralization (CCM), is considered to have a huge potential in stabilizing anthropogenic CO2 emissions. One of the CCM routes is the ex situ indirect gas/sold carbonation of reactive materials, such as Mg(OH)2, produced from abundantly available Mg-silicate rocks. The gas/solid carbonation method is intensively researched at Åbo Akademi University (ÅAU ), Finland because it is energetically attractive and utilizes the exothermic chemistry of Mg(OH)2 carbonation. In this thesis, a method for producing Mg(OH)2 from Mg-silicate rocks for CCM was investigated, and the process efficiency, energy and environmental impact assessed. The Mg(OH)2 process studied here was first proposed in 2008 in a Master’s Thesis by the author. At that time the process was applied to only one Mg-silicate rock (Finnish serpentinite from the Hitura nickel mine site of Finn Nickel) and the optimum process conversions, energy and environmental performance were not known. Producing Mg(OH)2 from Mg-silicate rocks involves a two-staged process of Mg extraction and Mg(OH)2 precipitation. The first stage extracts Mg and other cations by reacting pulverized serpentinite or olivine rocks with ammonium sulfate (AS) salt at 400 - 550 oC (preferably < 450 oC). In the second stage, ammonia solution reacts with the cations (extracted from the first stage after they are leached in water) to form mainly FeOOH, high purity Mg(OH)2 and aqueous (dissolved) AS. The Mg(OH)2 process described here is closed loop in nature; gaseous ammonia and water vapour are produced from the extraction stage, recovered and used as reagent for the precipitation stage. The AS reagent is thereafter recovered after the precipitation stage. The Mg extraction stage, being the conversion-determining and the most energy-intensive step of the entire CCM process chain, received a prominent attention in this study. The extraction behavior and reactivity of different rocks types (serpentinite and olivine rocks) from different locations worldwide (Australia, Finland, Lithuania, Norway and Portugal) was tested. Also, parametric evaluation was carried out to determine the optimal reaction temperature, time and chemical reagent (AS). Effects of reactor types and configuration, mixing and scale-up possibilities were also studied. The Mg(OH)2 produced can be used to convert CO2 to thermodynamically stable and environmentally benign magnesium carbonate. Therefore, the process energy and life cycle environmental performance of the ÅAU CCM technique that first produces Mg(OH)2 and the carbonates in a pressurized fluidized bed (FB) were assessed. The life cycle energy and environmental assessment approach applied in this thesis is motivated by the fact that the CCM technology should in itself offer a solution to what is both an energy and environmental problem. Results obtained in this study show that different Mg-silicate rocks react differently; olivine rocks being far less reactive than serpentinite rocks. In summary, the reactivity of Mg-silicate rocks is a function of both the chemical and physical properties of rocks. Reaction temperature and time remain important parameters to consider in process design and operation. Heat transfer properties of the reactor determine the temperature at which maximum Mg extraction is obtained. Also, an increase in reaction temperature leads to an increase in the extent of extraction, reaching a maximum yield at different temperatures depending on the reaction time. Process energy requirement for producing Mg(OH)2 from a hypothetical case of an iron-free serpentine rock is 3.62 GJ/t-CO2. This value can increase by 16 - 68% depending on the type of iron compound (FeO, Fe2O3 or Fe3O4) in the mineral. This suggests that the benefit from the potential use of FeOOH as an iron ore feedstock in iron and steelmaking should be determined by considering the energy, cost and emissions associated with the FeOOH by-product. AS recovery through crystallization is the second most energy intensive unit operation after the extraction reaction. However, the choice of mechanical vapor recompression (MVR) over the “simple evaporation” crystallization method has a potential energy savings of 15.2 GJ/t-CO2 (84 % savings). Integrating the Mg(OH)2 production method and the gas/solid carbonation process could provide up to an 25% energy offset to the CCM process energy requirements. Life cycle inventory assessment (LCIA) results show that for every ton of CO2 mineralized, the ÅAU CCM process avoids 430 - 480 kg CO2. The Mg(OH)2 process studied in this thesis has many promising features. Even at the current high energy and environmental burden, producing Mg(OH)2 from Mg-silicates can play a significant role in advancing CCM processes. However, dedicated future research and development (R&D) have potential to significantly improve the Mg(OH)2 process performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neoplasia intraepitelial da vulva (VIN) é uma denominação que foi introduzida incialmente pela International Society for Study of Vulvo-vaginal Diseases (ISSVD) e reconhecida posteriormente pela International Society of Gynaecological Pathology (ISGYP) e Organização Mundial da Saúde. É uma entidade patológica a que correspondem as VIN de tipo usual (verrucoso, basalióide e misto) e as VIN de tipo diferenciado. A incidência das lesões de VIN tem aumentado progressivamente, principalmente em mulheres jovens. A infecção pelo papilomavírus humano (HPV) de alto risco, pelo vírus da imunodeficiência humana (HIV), o tabagismo e a neoplasia intraepitelial do colo do útero, da vagina e região anal são factores de risco estabelecidos para as VIN. Não existem sintomas e sinais característicos das VIN, mas a doença se traduz sempre por lesões clinicamente identificáveis. A biópsia com o auxílio do colposcópio permite o diagnóstico. O tratamento da doença está sempre justificado pelo elevado risco de progressão para cancro invasivo. A excisão alargada das lesões ou a sua destruição com laser CO2 têm sido os métodos mais populares de tratamento. Independentemente do método terapêutico utilizado, as taxas de recidiva são elevadas, pelo que está aconselhada a vigilância apertada das doentes após tratamento. A terapêutica tópica com imiquimod se afigura promissora no tratamento das VIN. As vacinas profiláticas contra os tipos de HPV de alto risco prometem se tornar armas poderosas na prevenção primária da doença.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: descrever os resultados do tratamento da síndrome de transfusão feto-fetal grave com a ablação vascular placentária a laser em um centro universitário do Brasil. MÉTODOS: estudo observacional retrospectivo que incluiu pacientes tratadas na Universidade Estadual de Campinas entre 2007 e 2009. A ablação vascular placentária foi realizada em casos de transfusão feto-fetal grave (estágios II, III e IV de Quintero) diagnosticados até a 26ª semana de gravidez. As principais variáveis avaliadas foram a idade gestacional no parto, a sobrevida (alta do berçário) de pelo menos um gêmeo e o comprometimento neurológico nos sobreviventes. Regressão logística foi utilizada para investigar a influência do comprimento do colo uterino, da idade gestacional e do estágio da doença (antes da cirurgia) sobre o parto/abortamento e o óbito fetal após a intervenção, sobre o parto pré-termo extremo e a sobrevida. RESULTADOS: em toda a amostra, pelo menos uma criança sobreviveu em 63,3% dos casos (19/30). Entre as gestantes que não tiveram parto/abortamento após à cirurgia, a sobrevida de pelo menos um gêmeo foi 82,6% (19/23). Nesse subgrupo (n=23), a idade gestacional média no parto foi 31,9 semanas e o comprometimento neurológico ocorreu em um neonato (1/31; 3,2%). O comprimento do colo uterino influenciou na ocorrência de parto/abortamento após a cirurgia (valor de p=0,008). Entre sete pacientes (7/30; 23,3%) que apresentaram essa complicação, cinco (5/7; 71,4%) tinham medidas do colo uterino menores do que 15 mm. Entre as 23 gestantes que não tiveram parto/abortamento após a cirurgia, os estágios mais avançados da doença (III e IV) aumentaram o risco de parto antes de 32 semanas (valor de p=0,025) e diminuíram a chance de sobrevida de ambas as crianças (valor de p=0,026). CONCLUSÕES: os resultados são semelhantes aos descritos na literatura. Na presente amostra, os principais fatores associados a piores resultados foram o colo uterino curto (menor do que 15 mm) e os estágios mais avançados da doença (III e IV) no momento em que o tratamento foi realizado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effectiveness, recurrence rate, and complications of carbon-dioxide laser vaporization in the treatment of Bartholin's gland cysts. METHODS: A retrospective study including 127 patients with symptomatic Bartholin' gland cysts submitted to carbon-dioxide laser vaporization at our institution from January 2005 to June 2011. Patients with Bartholin's gland abscesses and those suspected of having neoplasia were excluded. All procedures were performed in an outpatient setting under local anaesthesia. Clinical records were reviewed for demographic characteristics, anatomic parameters, intraoperative and postoperative complications, and follow-up data. Data were stored and analyzed in Microsoft Excel® 2007 software. A descriptive statistical analysis was performed, and its results were expressed as frequency (percentage) or mean±standard deviation. Complication, recurrence, and cure rates were calculated. RESULTS: The mean age of the patients was 37.3±9.5 years-old (range from 18 to 61 years-old). Seventy percent (n=85) of them were multiparous. The most common symptom was pain and 47.2% (n=60) of patients had a history of previous medical and/or surgical treatment for Bartholin's gland abscesses. Mean cyst size was 2.7±0.9 cm. There were three (2.4%) cases of minor intraoperative bleeding. Overall, there were 17 (13.4%) recurrences within a mean of 14.6 months (range from 1 to 56 months): ten Bartholin's gland abscesses and seven recurrent cysts requiring reintervention. The cure rate after single laser treatment was 86.6%. Among the five patients with recurrent disease that had a second laser procedure, the cure rate was 100%. CONCLUSIONS: At this institution, carbon-dioxide laser vaporization seems to be a safe and effective procedure for the treatment of Bartholin's gland cysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron ore treatment processes are usually continuous and high tonnage and filtration equipment has to meet these requirements. In magnetite (Fe3O4) treatment process continuous rotary disc filters are often used for filtration. Carbon dioxide (CO2) treatment is a fairly novel and un-known filtration enhancing process. The interest to use CO2 is quite high because CO2 is a greenhouse gas that is abundant, readily available and capture and use of CO2 would be environmentally beneficial. The focus of this thesis was to investigate if CO2 could be used to enhance the filtration of magnetite with ceramic disc filter. Previous studies have suggested that CO2 could be used to enhance the filtration properties of different iron ores thus increasing the filtration capacity. In the literature part, the basic theory of filtration and the particle properties affecting filtration were discussed. The basic steps of a typical ore treatment process were presented. The reasons why CO2 might enhance the filtration properties of different ores were investigated. A literature survey of earlier studies of CO2 addition as a filter aid was presented and the basic chemical properties and reactions of CO2 were also discussed. The experimental part was done at the LUT Laboratory of Separation Technology using different magnetite samples from the industry. The filtration experiments indicated that CO2 had a positive influence on the filtration properties of magnetite slurry. Zeta potential of untreated and CO2 treated magnetite was measured and CO2 treated magnetite had lower zeta potential values than the untreated magnetite. The filtration capacity was increased while the cake moisture levels were only slightly increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä tutkimuksessa selvitetään ilman hitsauslisäainetta tapahtuvan laser–TIG–hybridihitsausprosessin soveltuvuus 6 mm ja 8 mm paksujen päittäisliitettyjen S355 K2 ja Laser 355 MC rakenneterästen hitsaukseen. Hitsien tarkastelussa huomio kiinnitetään hitsausnopeuteen, hitsien tunkeumaan, liittämistehokkuuteen, hitsien kovuuteen ja hitsausliitoksen ulkonäköön. Muita tutkittavia asioita ovat laser-TIG-hybridihitsattujen levyjen muodonmuutokset ja suuresta hitsausnopeudesta sekä pienestä t8/5 jäähtymisajasta johtuvat mahdolliset kylmähalkeamat. Laser-TIG-hybridihitsejä verrataan robotti-MAG- ja käsin MAG-hitseihin sekä kaarihitsausstandardin SFS-EN ISO 5817 hitsiluokkien mukaisiin raja-arvoihin. Laser-TIG-hybridihitsausprosessissa TIG-valokaari mahdollistaa tasaisen ja lähes roiskeettoman hitsin ja lasersäde aikaansaa syvän tunkeuman sekä tasalaatuisen juurihitsin. Laser-TIG-hybridihitsausprosessilla 6 mm paksut S355 K2 rakenneteräslevyt on mahdollista hitsata levyn yhdeltä puolelta kerralla valmiiksi. Paksummat 8 mm levyt voidaan hitsata levyn yhdeltä tai molemmilta puolilta suoritettavalla laser-TIG-hybridihitsauksella. Laser-TIG-hybridihitsausprosessilla hitsatut hitsit ovat hyvin siistejä ja lähes roiskeettomia. Verrattaessa laser-TIG-hybridihitsausprosessia muihin hitsausprosesseihin sen voidaan todeta olevan erittäin kilpailukykyinen 6 mm paksujen päittäisliitettyjen rakenneterästen hitsaamisessa, mutta se soveltuu myös 8 mm paksujen rakenneterästen hitsaamiseen. Tutkitut hitsit täyttävät kaarihitsausstandardin SFS-EN ISO 5817 B- ja D-hitsiluokkien mukaiset raja-arvot. Vertailukokeet 6 mm paksulla S355 rakenneteräksellä osoittavat, että yhdeltä puolelta suoritettavan laser-TIG-hybridihitsauksen hitsausnopeus on robotti-MAG-hitsaukseen verrattuna yli nelinkertainen ja MAG-käsinhitsaukseen verrattuna yli viisinkertainen. Laser-TIG-hybridihitsauksessa liittämistehokkuus on noin viisinkertainen robotti-MAGhitsaukseen verrattuna. Molemmilta puolilta suoritettavalla laser-TIG-hybridihitsauksella voidaan 8 mm paksulla S355 rakenneteräksellä saavuttaa noin kolminkertainen hitsausnopeus ja liittämistehokkuus robotti-MAG-hitsaukseen verrattuna. Laser-TIG-hybridihitsauksessa TIG-kaaren tuoman lisälämmön ansiosta suurillakin hitsausnopeuksilla (1 m/min) voidaan saavuttaa edulliset kovuusarvot. Kovuusmittausten tulosten perusteella 6 mm ja 8 mm paksujen S355 K2 ja Laser 355 MC rakenneterästen hitsit eivät ylittäneet kaarihitsausstandardin määrittelemää 350 HV kovuuden enimmäisrajaa. Laser-TIG-hybridihitsauksen edullisesta lämmöntuonnista johtuen levyjen pituus- ja poikittaissuuntaiset muodonmuutokset ovat noin 80 prosenttia pienemmät kuin käsin suoritettavassa MAG-hitsauksessa. Laser-TIG-hybridihitsausprosessilla käytetään I-railoa, mutta robotti-MAG- ja käsin MAG-hitsausprosesseilla joudutaan käyttämään V-railoa, jolloin lämmöntuonti ja siitä johtuvat muodonmuutokset ovat suuremmat. Korkea liittämistehokkuus ja edullinen lämmöntuonti merkitsevät vähäisempiä muodonmuutoksia ja siten merkittäviä säästöjä työ-, materiaali- ja energiakustannuksissa. 8 mm ja sitä paksummilla S355 rakenneteräksillä levyn yhdeltä puolelta suoritettava päittäisliitoksen hitsaaminen on laser-TIG hybridihitsauksella haastavaa, koska yli 200 A:n TIG-kaarivirralla suuri metallisula aiheuttaa avaimenreiän sulkeutumisen ja avaimenreiän alaosaan muodostuu kaasukuplia. Tästä voidaan tehdä sellainen johtopäätös, että päittäisliitettävien levyjen ilmarakoa pitäisi kasvattaa niin suureksi, että avaimenreiän sulavirtaus ei pääse estymään. Yli 0,25 mm:n ilmarako edellyttää lasersäteen vaaputusta tai säteen halkaisijan kasvattamista. Ilmaraon kasvattaminen edellyttää myös lisäaineen käyttöä. Tutkimustulosten perusteella laser-TIG-hybridihitsausprosessilla voidaan saavuttaa merkittäviä etuja ja kustannussäästöjä, joten sen hyödyntämistä kannattaa harkita 8 mm ja sitä ohuempien päittäisliitettävien tuotteiden konepaja- ja tehdastuotannossa. Laser-TIGhybridihitsausprosessi soveltuu esimerkiksi seuraavien tuotteiden hitsaamiseen: päittäisliitettävät levyt, palkit, koneenosat, putket, säiliöt ja erilaiset pyörähdyskappaleet.