949 resultados para CETP transgenic mice
Resumo:
In vivo (1)H MR spectroscopy allows the non invasive characterization of brain metabolites and it has been used for studying brain metabolic changes in a wide range of neurodegenerative diseases. The prion diseases form a group of fatal neurodegenerative diseases, also described as transmissible spongiform encephalopathies. The mechanism by which prions elicit brain damage remains unclear and therefore different transgenic mouse models of prion disease were created. We performed an in vivo longitudinal (1)H MR spectroscopy study at 14.1 T with the aim to measure the neurochemical profile of Prnp -/- and PrPΔ32-121 mice in the hippocampus and cerebellum. Using high-field MR spectroscopy we were able to analyze in details the in vivo brain metabolites in Prnp -/- and PrPΔ32-121 mice. An increase of myo-inositol, glutamate and lactate concentrations with a decrease of N-acetylaspartate concentrations were observed providing additional information to the previous measurements.
Resumo:
Experimental autoimmune myocarditis (EAM) is a CD4(+) T-cell-mediated model of human inflammatory dilated cardiomyopathies. Heart-specific CD4(+) T-cell activation is dependent on autoantigens presented by MHC class II (MHCII) molecules expressed on professional APCs. In this study, we addressed the role of inflammation-induced MHCII expression by cardiac nonhematopoietic cells on EAM development. EAM was induced in susceptible mice lacking inducible expression of MHCII molecules on all nonhematopoietic cells (pIV-/- K14 class II transactivator (CIITA) transgenic (Tg) mice) by immunization with α-myosin heavy chain peptide in CFA. Lack of inducible nonhematopoietic MHCII expression in pIV-/- K14 CIITA Tg mice conferred EAM resistance. In contrast, cardiac pathology was induced in WT and heterozygous mice, and correlated with elevated cardiac endothelial MHCII expression. Control mice with myocarditis displayed an increase in infiltrating CD4(+) T cells and in expression of IFN-γ, which is the major driver of nonhematopoietic MHCII expression. Mechanistically, IFN-γ neutralization in WT mice shortly before disease onset resulted in reduced cardiac MHCII expression and pathology. These findings reveal a previously overlooked contribution of IFN-γ to induce endothelial MHCII expression in the heart and to progress cardiac pathology during myocarditis.
Resumo:
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.
Resumo:
Le récepteur nucléaire Nr5a2 est exprimé dans l’ovaire, plus spécifiquement dans les cellules de granulosa et lutéales. Une déplétion conditionnelle de Nr5a2 dans les cellules de granulosa au stade de follicule primaire par croisement de souris Nr5a2-flox et Amhr2-Cre (Nr5a2f/fAmhr2Cre/+) génère des problèmes au niveau de l’expansion du cumulus, de l’ovulation et de la lutéinisation. Ainsi, nous estimons que Nr5a2 régule les connexions intercellulaires dans le follicule ovarien via la connexine 43 (Cx43), une protéine de jonction impliquée dans l’expansion du cumulus. Le premier objectif de l’étude était de déterminer si l’absence d’expansion du cumulus chez les souris Amhr2Cre-cKO est liée à l’absence de communication intercellulaire adéquate entre les cellules de granulosa et de cumulus dans les follicules préovulatoires. À cette fin, des ovaires de souris immatures Amhr2Cre-cKO et non transgéniques ont été prélevés (n=3) après un traitement de superstimulation utilisant les gonadotropines eCG suivie de hCG afin d’induire l’ovulation. Nous avons ainsi démontré, par RT-PCR, une sous-expression de Cx43 avant et au moment du stimulus ovulatoire (0 h et 2 h) chez le groupe Amhr2Cre-cKO (P<0.01), ce qui pourrait mener à un problème dans l’acquisition de la compétence développementale de l’oocyte. D’un autre côté, au moment de l’ovulation (12 h), l’ARNm de Cx43 est surexprimé dans le groupe Amhr2Cre-cKO, ce qui pourrait prévenir les cellules du cumulus de se détacher l’une de l’autre. Nous avons ainsi conclu que Cx43 est un gène sous le contrôle de Nr5a2 et qu’une régulation erronée de ce gène est une cause possible du problème d’expansion du cumulus chez les souris Amhr2Cre-cKO. Afin d’examiner le rôle de Nr5a2 dans l’ovulation et la lutéinisation à différents stades de la maturation folliculaire, nous suggérons que Nr5a2 module la séquence temporelle des événements menant à l’ovulation. En croisant des souris Nr5a2-flox et Cyp19-Cre (Nr5a2f/fCyp19Cre/+), l’expression de Nr5a2 a été interrompue dans les cellules de granulosa des follicules antraux et préovulatoires. Aucune portée n’a été obtenue de ces souris (n=4) durant un essai d’accouplement de 6 mois. Chez les souris Cyp19Cre-cKO on remarque la présence de structures s’apparentant à des cellules de type lutéales et les femelles âgées d’un an présentent des kystes folliculaires hémorragiques et une hypertrophie de l’épithélium en surface de l’ovaire. Les deux modèles transgéniques démontrent donc une absence de l’expansion du cumulus et de l’ovulation. En conclusion, Nr5a2 semble réguler différemment la folliculogenèse et l’ovulation dans les cellules de granulosa des follicules primaires et antraux.
Resumo:
Myostatin is described as a negative regulator of the skeletal muscle growth. Genetic engineering, in order to produce animals with double the muscle mass and that can transmit the characteristic to future progeny, may be useful. In this context, the present study aimed to analyse the feasibility of lentiviral-mediated delivery of short hairpin RNA (shRNA) targeting of myostatin into in vitro produced transgenic bovine embryos. Lentiviral vectors were used to deliver a transgene that expressed green fluorescent protein (GFP) and an shRNA that targeted myostatin. Vector efficiency was verified through in vitro murine myoblast (C2C12) cell morphology after inductive differentiation and by means of real-time PCR. The lentiviral vector was microinjected into the perivitellinic space of in vitro matured oocytes. Non-microinjected oocytes were used as the control. After injection, oocytes were fertilized and cultured in vitro. Blastocysts were evaluated by epifluorescence microscopy. Results demonstrated that the vector was able to inhibit myostatin mRNA in C2C12 cells, as the transducted group had a less amount of myostatin mRNA after 72 h of differentiation (p < 0.05) and had less myotube formation than the non-transduced group (p < 0.05). There was no difference in cleavage and blastocyst rates between the microinjected and control groups. After hatching, 3.07% of the embryos exhibited GFP expression, indicating that they expressed shRNA targeting myostatin. In conclusion, we demonstrate that a lentiviral vector effectively performed shRNA myostatin gene knockdown and gene delivery into in vitro produced bovine embryos. Thus, this technique can be considered a novel option for the production of transgenic embryos and double muscle mass animals.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.
Resumo:
Animal models have been relevant to study the molecular mechanisms of cancer and to develop new antitumor agents. Anyway, the huge divergence in mouse and human evolution made difficult the translation of the gained achievements in preclinical mouse based studies. The generation of clinically relevant murine models requires their humanization both concerning the creation of transgenic models and the generation of humanized mice in which to engraft a functional human immune system, and reproduce the physiological effects and molecular mechanisms of growth and metastasization of human tumors. In particular, the availability of genotypically stable immunodepressed mice able to accept tumor injection and allow human tumor growth and metastasization would be important to develop anti-tumor and anti-metastatic strategies. Recently, Rag2-/-;gammac-/- mice, double knockout for genes involved in lymphocyte differentiation, had been developed (CIEA, Central Institute for Experimental Animals, Kawasaki, Japan). Studies of human sarcoma metastasization in Rag2-/-; gammac-/- mice (lacking B, T and NK functionality) revealed their high metastatic efficiency and allowed the expression of human metastatic phenotypes not detectable in the conventionally used nude murine model. In vitro analysis to investigate the molecular mechanisms involved in the specific pattern of human sarcomas metastasization revealed the importance of liver-produced growth and motility factors, in particular the insulin-like growth factors (IGFs). The involvement of this growth factor was then demonstrated in vivo through inhibition of IGF signalling pathway. Due to the high growth and metastatic propensity of tumor cells, Rag2-/-;gammac-/- mice were used as model to investigate the metastatic behavior of rhabdomyosarcoma cells engineered to improve the differentiation. It has been recently shown that this immunodeficient model can be reconstituted with a human immune system through the injection of human cord blood progenitor cells. The work illustrated in this thesis revealed that the injection of different human progenitor cells (CD34+ or CD133+) showed peculiar engraftment and differentiation abilities. Experiments of cell vaccination were performed to investigate the functionality of the engrafted human immune system and the induction of specific human immune responses. Results from such experiments will allow to collect informations about human immune responses activated during cell vaccination and to define the best reconstitution and experimental conditions to create a humanized model in which to study, in a preclinical setting, immunological antitumor strategies.
Resumo:
Elevated systemic haematocrit (Hct) increases risk of cardiovascular disorders, such as stroke and myocardial infarction. One possible pathophysiological mechanism could be a disturbance of the blood-endothelium interface. It has been shown that blood interacts with the endothelial surface via a thick hydrated macromolecular layer (the 'glycocalyx', or 'endothelial surface layer'--ESL), modulating various biological processes, including inflammation, permeability and atherosclerosis. However, the consequences of elevated Hct on the functional properties of this interface are incompletely understood. Thus, we combined intravital microscopy of an erythropoietin overexpressing transgenic mouse line (tg6) with excessive erythrocytosis (Hct 0.85), microviscometric analysis of haemodynamics, and a flow simulation model to assess the effects of elevated Hct on glycocalyx/ESL thickness and flow resistance. We show that the glycocalyx/ESL is nearly abolished in tg6 mice (thickness: wild-type control: 0.52 μm; tg6: 0.13 μm; P < 0.001). However, the corresponding reduction in network flow resistance contributes <20% to the maintenance of total peripheral resistance observed in tg6 mice. This suggests that the pathological effects of elevated Hct in these mice, and possibly also in polycythaemic humans, may relate to biological corollaries of a reduced ESL thickness and the consequent alteration in the blood-endothelium interface, rather than to an increase of flow resistance.
Resumo:
Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.
Resumo:
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.
Resumo:
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the endothelial blood-brain barrier (BBB) and gain access to the CNS. It is well-established that alpha4 integrins are actively involved in leukocyte recruitment across the BBB during EAE. In contrast, the role of endothelial E- and P-selectin in this process has been a controversial issue. In this study, we demonstrate that P-selectin protein can be detected in meningeal blood vessel endothelial cells in healthy SJL and C57BL/6 mice and on rare parenchymal CNS blood vessels in C57BL/6, but not SJL, mice. During EAE, expression of P-selectin but not E-selectin was found up-regulated on inflamed CNS microvessels surrounded by inflammatory infiltrates irrespective of their meningeal or parenchymal localization with a more prominent immunostaining detected in C57BL/6 as compared with SJL mice. P-selectin immunostaining could be localized to CNS endothelial cells and to CD41-positive platelets adhering to the vessel wall. Despite the presence of P-selectin in wild-type mice, E/P-selectin-deficient SJL and C57BL/6 mice developed clinical EAE indistinguishable from wild-type mice. Absence of E- and P-selectin did neither influence the activation of myelin-specific T cells nor the composition of the cellular infiltrates in the CNS during EAE. Finally, endothelial-specific tetracycline-inducible expression of E-selectin at the BBB in transgenic C57BL/6 mice did not alter the development of EAE. Thus, E- and P-selectin are not required for leukocyte recruitment across the BBB and the development of EAE in C57BL/6 and in SJL mice.
Resumo:
The effect of hypoxic preconditioning (PC) on hypoxic-ischemic (HI) injury was explored in glutathione peroxidase (GPx)-overexpressing mice (human GPx-transgenic [hGPx-tg]) mice. Six-day-old hGPx-tg mice and wild-type (Wt) littermates were pre-conditioned with hypoxia for 30 min and subjected to the Vannucci procedure of HI 24 h after the PC stimulus. Histopathological injury was determined 5 d later (P12). Additional animals were killed 2 h or 24 h after HI and ipsilateral cerebral cortices assayed for GPx activity, glutathione (GSH), and hydrogen peroxide (H2O2). In line with previous studies, hypoxic PC reduced injury in the Wt brain. Preconditioned Wt brain had increased GPx activity, but reduced GSH, relative to naive 24 h after HI. Hypoxic PC did not reduce injury to hGPx-tg brain and even reversed the protection previously reported in the hGPx-tg. GPx activity and GSH in hGPx-tg cortices did not change. Without PC, hGPx-tg cortex had less H2O2 accumulation than Wt at both 2 h and 24 h. With PC, H2O2 remained low in hGPx-tg compared with Wt at 2 h, but at 24 h, there was no longer a difference between hGPx-tg and Wt cortices. Accumulation of H2O2 may be a mediator of injury, but may also induce protective mechanisms.
Resumo:
BACKGROUND: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells.Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. METHODS: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. RESULTS: AuNP were mainly found as singlets or small agglomerates of <= 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2+/-4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0+/-5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3+/-32.2% AuNP were on the epithelium and 58.3+/-41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5+/-4.8% AuNP were luminal, 21.4+/-14.2% within epithelial cells and 63.0+/-18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5+/-5.0% AuNP were luminal, 2.2+/-1.6% within epithelial cells and 82.8+/-0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. CONCLUSIONS: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.