943 resultados para Branched-chain Amino Acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adrenoleukodystrophy protein (ALDp) is an ATP-binding cassette (ABC) transporter in the human peroxisome membrane. It is defective in X chromosome-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder with impaired peroxisomal oxidation of very long chain fatty acids. We report cloning and characterization of PXA1, a yeast gene encoding a protein (Pxa1p) exhibiting high similarity to ALDp. Disruption of PXA1 results in impaired growth on oleic acid and reduced ability to oxidize oleate. Pxa1p is peroxisome associated; however, in the PXA1 mutant yeast, as in ALD cells, peroxisomes are morphologically intact. Disruption of a second yeast gene, YKL741, which encodes a more distantly related ALDp homolog (Yk174p), in either wild-type or PXA1 mutant yeast, results in a growth phenotype identical to that of the PXA1 mutant. This result suggests that Yk1741p and Pxa1p may be subunits of the same transporter. Sequence analysis of Pxa1p, ALDp, and related ABC transporters reveals a possible fatty acid binding domain and a 14-amino acid EAA-like motif, previously described only in prokaryotes. Because of the similarities in sequence and function, we propose that Pxa1p is the Saccharomyces cerevisiae ortholog of ALDp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La présentation antigénique par les molécules de classe II du complexe majeur d’histocompatibilité (CMH II) est un mécanisme essentiel au contrôle des pathogènes par le système immunitaire. Le CMH II humain existe en trois isotypes, HLA-DP, DQ et DR, tous des hétérodimères composés d’une chaîne α et d’une chaîne β. Le CMH II est entre autres exprimé à la surface des cellules présentatrices d’antigènes (APCs) et des cellules épithéliales activées et a pour fonction de présenter des peptides d’origine exogène aux lymphocytes T CD4+. L’oligomérisation et le trafic intracellulaire du CMH II sont largement facilités par une chaperone, la chaîne invariante (Ii). Il s’agit d’une protéine non-polymorphique de type II. Après sa biosynthèse dans le réticulum endoplasmique (ER), Ii hétéro- ou homotrimérise, puis interagit via sa région CLIP avec le CMH II pour former un complexe αβIi. Le complexe sort du ER pour entamer son chemin vers différents compartiments et la surface cellulaire. Chez l’homme, quatre isoformes d’Ii sont répertoriées : p33, p35, p41 et p43. Les deux isoformes exprimées de manière prédominante, Iip33 et p35, diffèrent par une extension N-terminale de 16 acides aminés portée par Iip35. Cette extension présente un motif de rétention au réticulum endoplasmique (ERM) composé des résidus RXR. Ce motif doit être masqué par la chaîne β du CMH II pour permettre au complexe de quitter le ER. Notre groupe s’est intéressé au mécanisme du masquage et au mode de sortie du ER des complexes αβIi. Nous montrons ici que l’interaction directe, ou en cis, entre la chaîne β du CMH II et Iip35 dans une structure αβIi est essentielle pour sa sortie du ER, promouvant la formation de structures de haut niveau de complexité. Par ailleurs, nous démontrons que NleA, un facteur de virulence bactérien, permet d’altérer le trafic de complexes αβIi comportant Iip35. Ce phénotype est médié par l’interaction entre p35 et les sous-unités de COPII. Bref, Iip35 joue un rôle central dans la formation des complexes αβIi et leur transport hors du ER. Ceci fait d’Iip35 un régulateur clef de la présentation antigénique par le CMH II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes.Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70 of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and γ-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amino acids are transported between different organs through both xylem and phloem. This redistribution of nitrogen and carbon requires the activity of amino acid transporters in the plasma membrane. In addition, amino acids can be taken up directly by the roots. Amino acid transport has been well characterized in the yeast Saccharomyces cerevisiae, and functional complementation has served as an excellent tool for identifying and characterizing amino acid transporters from plants. The transporters from yeast and plants are related and can be grouped into two large superfamilies. Based on substrate specificity and affinity, as well as expression patterns in plants, different functions have been assigned to some of the individual transporters. Plant mutants for amino acid transporter genes are now being used to study the physiological functions of many of the cloned genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unclassified Health and Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 311-350.