958 resultados para Bone formation markers
Resumo:
This thesis is a part of a larger study about the characterization of mechanical and histomorphometrical properties of bone. The main objects of this study were the bone tissue properties and its resistance to mechanical loads. Moreover, the knowledge about the equipment selected to carry out the analyses, the micro-computed tomography (micro-CT), was improved. Particular attention was given to the reliability over time of the measuring instrument. In order to understand the main characteristics of bone mechanical properties a study of the skeletal, the bones of which it is composed and biological principles that drive their formation and remodelling, was necessary. This study has led to the definition of two macro-classes describing the main components responsible for the resistance to fracture of bone: quantity and quality of bone. The study of bone quantity is the current clinical standard measure for so-called bone densitometry, and research studies have amply demonstrated that the amount of tissue is correlated with its mechanical properties of elasticity and fracture. However, the models presented in the literature, including information on the mere quantity of tissue, have often been limited in describing the mechanical behaviour. Recent investigations have underlined that also the bone-structure and the tissue-mineralization play an important role in the mechanical characterization of bone tissue. For this reason in this thesis the class defined as bone quality was mainly studied, splitting it into two sub-classes of bone structure and tissue quality. A study on bone structure was designed to identify which structural parameters, among the several presented in the literature, could be integrated with the information about quantity, in order to better describe the mechanical properties of bone. In this way, it was also possible to analyse the iteration between structure and function. It has been known for long that bone tissue is capable of remodeling and changing its internal structure according to loads, but the dynamics of these changes are still being analysed. This part of the study was aimed to identify the parameters that could quantify the structural changes of bone tissue during the development of a given disease: osteoarthritis. A study on tissue quality would have to be divided into different classes, which would require a scale of analysis not suitable for the micro-CT. For this reason the study was focused only on the mineralization of the tissue, highlighting the difference between bone density and tissue density, working in a context where there is still an ongoing scientific debate.
Resumo:
The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.
Resumo:
Entheses (skeletal attachment sites of muscles and ligaments) and their pathologic modifications (enthesopathies) have long been used as skeletal markers of activity in bioarchaeological (reconstruction of past populations lifestyle) and forensic (personal identification) contexts. However, a functional interpretation of these markers have to deal critically with the multifactorial etiology of the same. Factors such as sex, age, genetic factors, mechanical stress, metabolic conditions, etc.. can compete to produce the observed morphological variability at each attachment site. The aim of this thesis has drawn on the ongoing debate about the informativeness of entheseal modifications as skeletal markers of activity and represent a deepening of the actual knowledge about the relationship between these characters and sex, age and physical activity. For this purpose, the whole "Frassetto” identified skeletal collection of Sassari (Sardinia, Italy) was analyzed. The collection includes the skeletal remains of about 600 individuals died in the late 19th and early 20th century for whom information regarding sex, age at death and, in many cases the occupation are known The results obtained highlight the great age importance on the entheseal modifications. The differences observed between sexes may reflect differences in the level or type of activity performed in life, but could also be related to a different bone tissue response to mechanical stress due to hormonal factors and different growth rates. The role of biomechanical stress related to professional activities remains doubtful. This is probably partly attributable to the analyzed sample characteristics (preponderance of farmers compared with other professions, different mean age of the considered professional subsamples), which has hampered the analysis of samples homogenous with regard to age, which is very influential on the entheses and enthesopathies expression.
Resumo:
The establishment of appropriate synapses between neurons and their target cells is an essential requirement for the formation of functional neuronal circuits. However, there is very little insight into the mechanisms underlying de novo formation of synapses and synaptic terminals. To identify novel genes involved in signalling or structural aspects of these processes I capitalised on possibilities provided by the model organism Drosophila. Thus, I contributed to a screen of a collection of third chromosomal mutations (Salzberg et al., 1997, Genetics 147, 1723ff.) selecting those mutant strains displaying structural defects of Drosophila neuromuscular junctions (NMJ). Carrying out genetic mapping experiments, I could assign 7 genes to interesting candidate mutations. All 7 mutations selected in this process cause size alterations of the embryonic NMJ, and one shows additional disturbances in the distribution of synaptic markers. 4 of these turned out to be transcription factors, not falling into the remit of this project. Only for one of these, the neuronal transcription factor Castor, I could show that its overgrown mutant NMJ phenotype is due to an increase in the number of motorneurons. The remaining genes encode a potential nitrophenylphosphatase, the translation initiation factor eIF4AIII, and a novel protein Waharan. Unfortunately, the nitophenylphosphatase gene was identified too late to carry out functional studies in the context of this project, but potential roles are discussed. eIF4AIII promotes NMJ size tempting to speculate that local translation at the NMJ is affected. I found that the synaptic scaffolding molecule Discs large (Dlg; orthologue of PSD95) is upregulated at eIF4AIII mutant NMJs. Targeted upregulation of Dlg can not mimic the eIF4AIII mutant phenotype, but dlg mutations suppress it. Therefore, Dlg function is required but not sufficient in this context. My findings are discussed in detail, pointing out future directions. The main focus of this work is the completely novel gene waharan (wah), an orthologue of the human gene KIAA1267 encoding a big brain protein of likewise unknown structure and function. My studies show that mutations or RNAi knock-down of wah cause NMJ overgrowth and reveal additional crucial roles in the patterning of wing imginal discs. RNAi studies suggest Wah to be required pre- and postsynaptically at NMJs and, consistently, wah is transcribed in the nervous system and muscles. Anti-Wah antisera were produced but could no longer be tested here, but preliminary studies with newly generated HA-targeted constructs suggest that Wah localises at NMJs and in neuronal nuclei. In silico analyses predict Wah to be structurally related to the Rad23-family of proteins, likely to target ubiquitinated proteins to the proteasome for degradation (Chen et al., 2002, Mol Cell Biol 22, 4902ff.) . In agreement with this prediction, poly-ubiquitinated proteins were found to accumulate in the absence of wah function, and wah-like mutant phenotypes were induced in NMJs and wing discs by knocking down proteasome function. My analysis further revealed that poly-ubiquitinated proteins are reduced in nuclei of wah mutant neurons and muscles, suggesting that Wah may play additional roles in ubiquitin-mediated nuclear import. Taken together, this study has uncovered a number of interesting candidate genes required for the de novo formation of Drosophila NMJs. 3 of these genes fell into the focus of this project. As discussed in detail, discovery of these genes and insights gained into their function have high potential to be translatable into vertebrate systems.
Resumo:
The present research thesis was focused on the development of new biomaterials and devices for application in regenerative medicine, particularly in the repair/regeneration of bone and osteochondral regions affected by degenerative diseases such as Osteoarthritis and Osteoporosis or serious traumas. More specifically, the work was focused on the synthesis and physico-chemical-morphological characterization of: i) a new superparamagnetic apatite phase; ii) new biomimetic superparamagnetic bone and osteochondral scaffolds; iii) new bioactive bone cements for regenerative vertebroplasty. The new bio-devices were designed to exhibit high biomimicry with hard human tissues and with functionality promoting faster tissue repair and improved texturing. In particular, recent trends in tissue regeneration indicate magnetism as a new tool to stimulate cells towards tissue formation and organization; in this perspective a new superparamagnetic apatite was synthesized by doping apatite lattice with di-and trivalent iron ions during synthesis. This finding was the pin to synthesize newly conceived superparamagnetic bone and osteochondral scaffolds by reproducing in laboratory the biological processes yielding the formation of new bone, i.e. the self-assembly/organization of collagen fibrils and heterogeneous nucleation of nanosized, ionically substituted apatite mimicking the mineral part of bone. The new scaffolds can be magnetically switched on/off and function as workstations guiding fast tissue regeneration by minimally invasive and more efficient approaches. Moreover, in the view of specific treatments for patients affected by osteoporosis or traumas involving vertebrae weakening or fracture, the present work was also dedicated to the development of new self-setting injectable pastes based on strontium-substituted calcium phosphates, able to harden in vivo and transform into strontium-substituted hydroxyapatite. The addition of strontium may provide an anti-osteoporotic effect, aiding to restore the physiologic bone turnover. The ceramic-based paste was also added with bio-polymers, able to be progressively resorbed thus creating additional porosity in the cement body that favour cell colonization and osseointegration.
Resumo:
Bone metastases are responsible for different clinical complications defined as skeletal-related events (SREs) such as pathologic fractures, spinal cord compression, hypercalcaemia, bone marrow infiltration and severe bone pain requiring palliative radiotherapy. The general aim of these three years research period was to improve the management of patients with bone metastases through two different approaches of translational research. Firstly in vitro preclinical tests were conducted on breast cancer cells and on indirect co-colture of cancer cells and osteoclasts to evaluate bone targeted therapy singly and in combination with conventional chemotherapy. The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Furthermore the combination Zoledronic Acid + Cisplatin induced a high antitumoral activity in the two triple-negative lines MDA-MB-231 and BRC-230. The p21, pMAPK and m-TOR pathways were regulated by this combined treatment, particularly at lower Cisplatin doses. A co-colture system to test the activity of bone-targeted molecules on monocytes-breast conditioned by breast cancer cells was also developed. Another important criticism of the treatment of breast cancer patients, is the selection of patients who will benefit of bone targeted therapy in the adjuvant setting. A retrospective case-control study on breast cancer patients to find new predictive markers of bone metastases in the primary tumors was performed. Eight markers were evaluated and TFF1 and CXCR4 were found to discriminate between patients with relapse to bone respect to patients with no evidence of disease. In particular TFF1 was the most accurate marker reaching a sensitivity of 63% and a specificity of 79%. This marker could be a useful tool for clinicians to select patients who could benefit for bone targeted therapy in adjuvant setting.
Resumo:
Bone is continually being removed and replaced through the actions of basic multicellular units (BMU). This constant upkeep is necessary to remove microdamage formed naturally due to fatigue and thus maintain the integrity of the bone. The repair process in bone is targeted, meaning that a BMU travels directly to the site of damage and repairs it. It is still unclear how targeted remodelling is stimulated and directed but it is highly likely that osteocytes play a role. A number of theories have been advanced to explain the microcrack osteocyte interaction but no complete mechanism has been demonstrated. Osteocytes are connected to each other by dendritic processes. The “scissors model" proposed that the rupture of these processes where they cross microcracks signals the degree of damage and the urgency of the necessary repair. In its original form it was proposed that under applied compressive loading, microcrack faces will be pressed together and undergo relative shear movement. If this movement is greater than the width of an osteocyte process, then the process will be cut in a “scissors like" motion, releasing RANKL, a cytokine known to be essential in the formation of osteoclasts from pre-osteoclasts. The main aim of this thesis was to investigate this theoretical model with a specific focus on microscopy and finite element modelling. Previous studies had proved that cyclic stress was necessary for osteocyte process rupture to occur. This was a divergence from the original “scissors model" which had proposed that the cutting of cell material occurred in one single action. The present thesis is the first study to show fatigue failure in cellular processes spanning naturally occurring cracks and it's the first study to estimate the cyclic strain range and relate it to the number of cycles to failure, for any type of cell. Rupture due to shear movement was ruled out as microcrack closing never occurred, as a result of plastic deformation of the bone. Fatigue failure was found to occur due to cyclic tensile stress in the locality of the damage. The strain range necessary for osteocyte process rupture was quantified. It was found that the lower the process strain range the greater the number of cycles to cell process failure. FEM modelling allowed to predict stress in the vicinity of an osteocyte process and to analyse its interaction with the bone surrounding it: simulations revealed evident creep effects in bone during cyclic loading. This thesis confirms and dismisses aspects of the “scissors model". The observations support the model as a viable mechanism of microcrack detection by the osteocyte network, albeit in a slightly modified form where cyclic loading is necessary and the method of rupture is fatigue failure due to cyclic tensile motion. An in depth study was performed focusing on microscopy analysis of naturally occurring cracks in bone and FEM simulation analysis of an osteocyte process spanning a microcrack in bone under cyclic load.
Resumo:
Die Winden-Glasflügelzikade Hyalesthes obsoletus (Cixiidae, Glasflügelzikaden) nutzte in Deutschland ursprünglich die Ackerwinde Convolvulus arvensis als Wirtspflanze, allerdings nahm in den letzten zwei Dekaden die Abundanz auf der Großen Brennnessel Urtica dioica stark zu, zusammen mit der Inzidenz der Schwarzholzkrankheit Bois noir auf Weinreben. Bois noir wird durch ein Phytoplasma verursacht, das durch H. obsoletus von C. arvensis und U. dioica auf Weinreben übertragen wird. Es stellte sich daher die Frage, ob H. obsoletus Wirtsrassen entwickelt hat, die möglicherweise die Bois noir-Epidemiologie beeinflussen. In der vorliegenden Studie wurden folgende Fragestellungen bearbeitet: rn(1) Gibt es in Deutschland und Europa genetisch unterscheidbare Wirtsrassen von H. obsoletus auf den beiden Wirtspflanzen C. arvensis und U. dioica? Es wurden sieben Mikrosatellitenmarker entwickelt und etabliert, um H. obsoletus Populationen aus Deutschland und Europa genetisch zu analysieren. Es zeigte sich eine deutliche Differenzierung zwischen Populationen von beiden Wirtspflanzen in Deutschland, jedoch nicht in den historischen Ursprungsgebieten der deutschen Populationen, in der Schweiz, Italien oder Slovenien.rn(2) Wo sind die deutschen Wirtsrassen von H. obsoletus entstanden? Eine Einwanderung von südlichen, bereits an U. dioica angepassten Individuen stand einer lokalen Wirtsrassenevolution gegenüber. Die engere genetische Verwandtschaft der deutschen Population auf U. dioica zu denen auf C. arvensis, im Vergleich zu den übrigen Populationen auf U. dioica, impliziert einen lokalen Prozess im nördlichen Verbreitungsgebiet. Eine Immigration südlicher Tiere scheint nicht zur Diversifizierung beigetragen zu haben, führte aber möglicherweise einen U. dioica-spezifischen Phytoplasma-Stamm ein. Durch Wirtsrassenevolution entwickelten sich spezifische, vektorbasierte epidemiologische Kreisläufe der Schwarzholzkrankheit Bois noir. rn(3) Welche Präferenzen zeigen die beiden Wirtsrassen von H. obsoletus für die Wirtspflanzen C. arvensis und U. dioica und unterscheiden sich diese? Die Präferenz von H. obsoletus aus beiden deutschen Wirtsrassen in Bezug auf den Geruch der Wirtspflanzen wurde in einem Y-Olfaktometer untersucht, zusätzlich wurden beide Pflanzen direkt zur Wahl gestellt. Bei beiden Untersuchungen zeigte die Population von C. arvensis eine signifikante Präferenz für ihre native Wirtspflanze. Die Population von U. dioica wies dagegen keine Präferenz für den Geruch einer Wirtspflanze auf, bevorzugte im direkten Test jedoch signifikant ihre native Wirtspflanze. Dies weist darauf hin, dass die Anpassung an den „neuen“ Wirt noch nicht vollständig ist.rn
Resumo:
Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.
Resumo:
BACKGROUND: Decreased bone mineral density has been reported in children with inflammatory bowel disease (IBD). We used peripheral quantitative computed tomography (pQCT) to assess bone mineralization, geometry, and muscle cross-sectional area (CSA) in pediatric IBD. METHODS: In a cross-sectional study, pQCT of the forearm was applied in 143 IBD patients (mean age 13.9 +/- 3.5 years); 29% were newly diagnosed, 98 had Crohn's disease, and 45 had ulcerative colitis. Auxological data, cumulative glucocorticoid dose, disease activity indices, laboratory markers for inflammation, and bone metabolism were related to the results of pQCT. RESULTS: Patients were compromised in height (-0.82 +/- 1.1 SD), weight (-0.77 +/- 1.0 SD), muscle mass (-1.12 +/- 1.0 SD), and total bone cross-sectional area (-0.79 +/- 1.0 SD) compared to age- and sex-matched healthy controls (z-scores). In newly diagnosed patients, the ratio of bone mineral mass per muscle CSA was higher than in those with longer disease duration (1.00 versus 0.30, P = 0.007). Serum albumin level and disease activity correlated with muscle mass, accounting for 41.0% of variability in muscle mass (P < 0.01). The trabecular bone mineral density z-score was on average at the lower normal level (-0.40 +/- 1.3 SD, P < 0.05). CONCLUSIONS: Reduced bone geometry was explained only in part by reduced height. Bone disease in children with IBD seems to be secondary to muscle wasting, which is already present at diagnosis. With longer disease duration, bone adapts to the lower muscle CSA. Serum albumin concentration is a good marker for muscle wasting and abnormal bone development.
Resumo:
OBJECTIVE: Myofibroblasts are responsible for contraction and scarring after cleft palate repair. This leads to growth disturbances in the upper jaw. We hypothesized that cells from the bone marrow are recruited to palatal wounds and differentiate into myofibroblasts. METHODS: We transplanted bone marrow from green fluorescent protein (GFP)-transgenic rats into lethally irradiated wild-type rats. After recovery, experimental wounds were made in the palatal mucoperiosteum, and harvested 2 weeks later. GFP-expressing cells were identified using immunostaining. Myofibroblasts, activated fibroblasts, endothelial cells, and myeloid cells were quantified with specific markers. RESULTS: After transplantation, 89 ± 8.9% of mononuclear cells in the blood expressed the GFP and about 50% of adherent cells in the bone marrow. Tissue obtained during initial wounding contained only minor numbers of GFP-positive cells, like adjacent control tissue. Following wound healing, 8.1 ± 5.1% of all cells in the wound area were positive, and 5.0 ± 4.0% of the myofibroblasts, which was significantly higher than in adjacent tissue. Similar percentages were found for activated fibroblasts and endothelial cells, but for myeloid cells it was considerably higher (22 ± 9%). CONCLUSIONS: Bone marrow-derived cells contribute to palatal wound healing, but are not the main source of myofibroblasts. In small wounds, the local precursor cells are probably sufficient to replenish the defect.
Resumo:
Cell therapy along with growth factor injection is currently widely investigated to restore the intervertebral disc. However, there is increasing evidence that transplanted unconditioned bone marrow-derived stromal cells (BMSCs) cannot thrive in the intervertebral disc "niche". Moreover, uncertainty exists with respect to the cell phenotype that would be suitable to inject. The intervertebral disc cell phenotype only recently has been started to be characterised using transcriptomics profiling. Recent findings suggest that cytokeratin 19 (KRT-19) could be used as a potential candidate marker for the intervertebral disc, or more specifically the nucleus pulposus cell (NPC) phenotype. We present in vitro cell culture data using alginate bead culture of primary human BMSCs exposed to the standard chondrogenic stimulus, transforming growth factor beta-1 (TGF-β), the growth and differentiation factor 5 and/or bovine NPCs to induce a potential "discogenic" pathway. Chondrogenic induction via TGF-β pathway provoked down-regulation of KRT-19 gene expression in four out of five donors after 18 days of culture, whereas KRT-19 expression remained unchanged in the "discogenic" groups. In addition, the ratio of aggrecan/collagen II gene expression showed a remarkable difference (of at least 3 magnitudes) between the chondrogenic stimulus (low ratio) and the discogenic stimulus (high ratio). Therefore, KRT-19 and aggrecan/collagen II ratio may be potential markers to distinguish chondrogenic from "discogenic" differentiation.
Resumo:
Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.
Resumo:
SerpinB1 is among the most efficient inhibitors of neutrophil serine proteases--NE, CG, and PR-3--and we investigated here its role in neutrophil development and homeostasis. We found that serpinB1 is expressed in all human bone marrow leukocytes, including stem and progenitor cells. Expression levels were highest in the neutrophil lineage and peaked at the promyelocyte stage, coincident with the production and packaging of the target proteases. Neutrophil numbers were decreased substantially in the bone marrow of serpinB1(-/-) mice. This cellular deficit was associated with an increase in serum G-CSF levels. On induction of acute pulmonary injury, neutrophils were recruited to the lungs, causing the bone marrow reserve pool to be completely exhausted in serpinB1(-/-) mice. Numbers of myeloid progenitors were normal in serpinB1(-/-) bone marrow, coincident with the absence of target protease expression at these developmental stages. Maturation arrest of serpinB1(-/-) neutrophils was excluded by the normal CFU-G growth in vitro and the normal expression in mature neutrophils of early and late differentiation markers. Normal absolute numbers of proliferating neutrophils and pulse-chase kinetic studies in vivo showed that the bone marrow deficit in serpinB1(-/-) mice was largely restricted to mature, postmitotic neutrophils. Finally, upon overnight culture, apoptosis and necrosis were greater in purified bone marrow neutrophils from serpinB1(-/-) compared with WT mice. Collectively, these findings demonstrate that serpinB1 sustains a healthy neutrophil reserve that is required in acute immune responses.
Resumo:
The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.