976 resultados para Blue Path Technology
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Resumo:
Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.
Resumo:
Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.
Resumo:
In this study, we investigated the application of “on-the-go” assessment of wheat protein and moisture under a breeding trial situation.
Resumo:
We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.
Resumo:
Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. W initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy strategy. The framework has been implemented in the Scale research compiler, and instantiated for the specific problem of Constant Propagation. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach.
Resumo:
Regional and remote Indigenous students are underrepresented in both higher education and vocational education and training. Enabling education courses are important in lifting participation rates and potentially in encouraging mobility between the sectors, yet there is a clear lack of evidence underpinning their development. This report provides an overview of the data collection and analysis activities undertaken via a research project funded by the National Centre for Student Equity in Higher Education. The project purpose was to explore current practices dealing with Indigenous enabling courses, particularly in the context of regional, dual-sector universities. In particular, the project examined how these programs vary by institution (and region) in terms of structure, mode and ethos of offering; and direct and indirect impacts of these initiatives on Indigenous student participation and attainment; with a view to designing a best practice framework and implementation statement. Through its focus on students accessing Indigenous and mainstream enabling education, the project focussed on range of equity groups including those of low socio-economic status (both school leaver and mature-age categories), regional and/or remote students, Indigenous students and students with disability.
Resumo:
Developing countries in Asia and the Pacific are rapidly reaching middle income economic status. Their competitive advantage is shifting from labor-intensive industries and natural resource-based economies to knowledge-based economies that innovate and create new products and services. Early adoption of information and communication technology (ICT) can allow countries to leapfrog over the traditional development pathway into production of knowledge-based products and services. Since higher education institutions (HEIs) are considered a primary engine of economic growth, adoption of ICT is imperative for securing competitive advantage. ICT is thought to be one of the fastest growing industries and is frequently heralded as a transforming influence on higher education systems globally and, consequently, is enhancing the competitive advantage of countries. It is increasingly becoming evident that an institution-wide ICT strategy covering all evolving functions of competitive HEIs is necessary. Such a system may be designed as an integrated platform but implemented in phases.
Resumo:
This report provides details of visits and investigations conducted during an international study tour by the author.
Resumo:
To enhance the sustainability of marine finfish aquaculture in the Asia-Pacific (AP) region by improving hatchery production technology and facilitating the uptake of compounded feeds for grow-out.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Access to relevant and timely information and training resources has emerged as a significant issue from the Delivering Mango Technology (DMT) project. This project will facilitate providing managing information and technology tools for growers. Using a range of methods, including workshops, events, and web based technology facilitated through the Australian Mango Industry Association’s (AMIA) website, DMT stage 2 will develop a high profile delivery vehicle to building industry knowledge and resources .
Resumo:
DArTseq technology is potentially the most appropriate system to discover hundreds of polymorphic genomic loci, scoring thousands of unique genomic-wide DNA fragments in one single experiment, without requiring existing DNA sequence information. The DArT complexity reduction approach in combination with Illumina short read sequencing (Hiseq2000) was applied. To test the application of DArTseq technology in pineapple, a reference population of 13 Ananas genotypes from primitive wild accessions to modern cultivars was used. In a comparison of 3 systems, the combination of restriction enzymes PstI and MseI performed the best producing 18,900 DArT markers and close to 20,000 SNPs. Based on these markers genetic relationships between the samples were identified and a dendrogram was generated. The topography of the tree corresponds with our understanding of the genetic relationships between the genotypes. Importantly, the replicated samples of all genotypes have a dissimilarity of close to 0.0 and occupy the same positions on the tree, confirming high reproducibility of the markers detected. Eventually it is planned that molecular markers will be identified that are associated with resistance to Phytophthora cinnamomi (Pc), the most economically important pathogen of pineapple in Australia, as genetic resistance is known to exist within the Ananas. Marker assisted selection can then be utilized in a pineapple breeding program to develop cultivars resistant to Pc.