923 resultados para Blocks of concrete
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
This study discusses the importance of establishing trust in post-acquisition integration context and how the use of e-channels facilitates or inhibits this process. The objective of this study is to analyze how the use of electronic communication channels influences the post-acquisition integration process in terms of trust establishment and overall integration efficiency, developing a framework as a result. Three sub-objectives are introduced: to find out the building blocks of trust in M&A’s, to analyse how the use of e-channels influence the process of trust establishment in post-acquisition integration context, and to define the consequences trust and use of e-channels have for the process. The theoretical background of the study includes literature and theories relating to trust establishment in post-acquisition integration context and how the use of e-channels influences the process of trust development on a general level. The empirical research is conducted as a single case study, based on key informant interviews. The interview data was collected between October 2015 and January 2016. Altogether nine interviews were realised; six with representatives from the acquiring firm and three with target firm members. Thematic analysis was selected as the main method for analysing and processing the qualitative data. This study finds that trust has an essential role in post-acquisition integration context, facilitating the integration process in various different ways. Hence, identifying the different building blocks of trust is important in order for members of the organisations to be better able establish and maintain trust. In today’s international business, the role of electronic communication channels has also increased in importance significantly and it was confirmed that these pose both challenges and possibilities for the development of interpersonal trust. One of the most important underlying factors influencing the trust levels via e-communication channels is the level of user’s comfort in using the different e-channels. Without sufficient and meaningful training, the communication conducted via these channels in inhibited in a number of ways. Hence, understanding the defining characteristics of e-communication together with the risks and opportunities related to the use of these can have far-reaching consequences for the post-acquisition integration process as a whole. The framework based on the findings and existing theory introduces the most central factors influencing the trust establishment together with the positive and negative consequences these have for the integration process. Moreover, organizational level consistency and the existence of shared guidelines on appropriate selection of communication channels according to the nature of the task at hand are seen as important
Resumo:
BACKGROUND: Post-abortion contraceptive use in India is low and the use of modern methods of contraception is rare, especially in rural areas. This study primarily compares contraceptive use among women whose abortion outcome was assessed in-clinic with women who assessed their abortion outcome at home, in a low-resource, primary health care setting. Moreover, it investigates how background characteristics and abortion service provision influences contraceptive use post-abortion. METHODS: A randomized controlled, non-inferiority, trial (RCT) compared clinic follow-up with home-assessment of abortion outcome at 2 weeks post-abortion. Additionally, contraceptive-use at 3 months post-abortion was investigated through a cross-sectional follow-up interview with a largely urban sub-sample of women from the RCT. Women seeking abortion with a gestational age of up to 9 weeks and who agreed to a 2-week follow-up were included (n = 731). Women with known contraindications to medical abortions, Hb < 85 mg/l and aged below 18 were excluded. Data were collected between April 2013 and August 2014 in six primary health-care clinics in Rajasthan. A computerised random number generator created the randomisation sequence (1:1) in blocks of six. Contraceptive use was measured at 2 weeks among women successfully followed-up (n = 623) and 3 months in the sub-set of women who were included if they were recruited at one of the urban study sites, owned a phone and agreed to a 3-month follow-up (n = 114). RESULTS: There were no differences between contraceptive use and continuation between study groups at 3 months (76 % clinic follow-up, 77 % home-assessment), however women in the clinic follow-up group were most likely to adopt a contraceptive method at 2 weeks (62 ± 12 %), while women in the home-assessment group were most likely to adopt a method after next menstruation (60 ± 13 %). Fifty-two per cent of women who initiated a method at 2 weeks chose the 3-month injection or the copper intrauterine device. Only 4 % of women preferred sterilization. Caste, educational attainment, or type of residence did not influence contraceptive use. CONCLUSIONS: Simplified follow-up after early medical abortion will not change women's opportunities to access contraception in a low-resource setting, if contraceptive services are provided as intra-abortion services as early as on day one. Women's postabortion contraceptive use at 3 months is unlikely to be affected by mode of followup after medical abortion, also in a low-resource setting. Clinical guidelines need to encourage intra-abortion contraception, offering the full spectrum of evidence-based methods, especially long-acting reversible methods. TRIAL REGISTRATION: Clinicaltrials.gov NCT01827995.
Resumo:
Abstract : Wastepaper sludge ash (WSA) is generated by a cogeneration station by burning wastepaper sludge. It mainly consists of amorphous aluminosilicate phase, anhydrite, gehlenite, calcite, lime, C2S, C3A, quartz, anorthite, traces of mayenite. Because of its free lime content (~10%), WSA suspension has a high pH (13). Previous researchers have found that the WSA composition has poor robustness and the variations lead to some unsoundness for Portland cement (PC) blended WSA concrete. This thesis focused on the use of WSA in different types of concrete mixes to avoid the deleterious effect of the expansion due to the WSA hydration. As a result, WSA were used in making alkali-activated materials (AAMs) as a precursor source and as a potential activator in consideration of its amorphous content and the high alkaline nature. Moreover, the autogenous shrinkage behavior of PC concrete at low w/b ratio was used in order to compensate the expansion effect due to WSA. The concrete properties as well as the volume change were investigated for the modified WSA blended concrete. The reaction mechanism and microstructure of newly formed binder were evaluated by X-ray diffraction (XRD), calorimetry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). When WSA was used as precursor, the results showed incompatible reaction between WSA and alkaline solution. The mixtures were not workable and provided very low compressive strength no matter what kinds of chemical activators were used. This was due to the metallic aluminum in WSA, which releases abundant hydrogen gas when WSA reacts with strong alkaline solution. Besides, the results of this thesis showed that WSA can activate the glassy phase contained in slag, glass powder (GP) and class F fly ash (FFA) with an optimum blended ratio of 50:50. The WSA/slag (mass ratio of 50:50) mortar (w/b of 0.47) attained 46 MPa at 28 days without heat curing assistance. A significant fast setting was noticed for the WSA-activated binder due to the C3A phase, free lime and metallic aluminum contained in the WSA. Adding 5% of gypsum can delay the fast setting, but this greatly increased the potential risk of intern sulfate attack. The XRD, TGA and calorimetry analyses demonstrated the formation of ettringite, C-S-H, portlandite, hydrogarnet and calcium carboaluminate in the hydrated binder. The mechanical performance of different binder was closely related to the microstructure of corresponding binder which was proved by the SEM observation. The hydrated WSA/slag and WSA/FFA binder formed a C-A-S-H type of gel with lower Ca/Si ratio (0.47~1.6). A hybrid gel (i.e. C-N-A-S-H) was observed for the WSA/GP binder with a very low Ca/Si ratio (0.26) and Na/Si ratio (0.03). The SEM/EDX analyses displayed the formation of expansive gel (ettringite and thaumasite) in the gypsum added WSA/slag concrete. The gradual emission of hydrogen gas due to the reaction of WSA with alkaline environment significantly increased the porosity and degraded the microstructure of hydrated matrix after the setting. In the last phase of this research WSA-PC blended binder was tailored to form a high autogenous shrinkage concrete in order to compensate the initial expansion. Different binders were proportioned with PC, WSA, silica fume or slag. The microstructure and mechanical properties of concrete can be improved by decreasing w/b ratios and by incorporating silica fume or slag. The 28-day compressive strength of WSA-blended concrete was above 22 MPa and reached 45 MPa when silica fume was added. The PC concrete incorporating silica fume or slag tended to develop higher autogenous shrinkage at low w/b ratios, and thus the ternary binder with the addition of WSA inhibited the long term shrinkage due to the initial expansion property to WSA. In the restrained shrinkage test, the concrete ring incorporating the ternary binder (PC/WSA/slag) revealed negligible potential to cracking up to 96 days as a result of the offset effect by WSA expansion. The WSA blended regular concrete could be produced for potential applications with reduced expansion, good mechanical property and lower permeability.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Le dimensionnement basé sur la performance (DBP), dans une approche déterministe, caractérise les objectifs de performance par rapport aux niveaux de performance souhaités. Les objectifs de performance sont alors associés à l'état d'endommagement et au niveau de risque sismique établis. Malgré cette approche rationnelle, son application est encore difficile. De ce fait, des outils fiables pour la capture de l'évolution, de la distribution et de la quantification de l'endommagement sont nécessaires. De plus, tous les phénomènes liés à la non-linéarité (matériaux et déformations) doivent également être pris en considération. Ainsi, cette recherche montre comment la mécanique de l'endommagement pourrait contribuer à résoudre cette problématique avec une adaptation de la théorie du champ de compression modifiée et d'autres théories complémentaires. La formulation proposée adaptée pour des charges monotones, cycliques et de type pushover permet de considérer les effets non linéaires liés au cisaillement couplé avec les mécanismes de flexion et de charge axiale. Cette formulation est spécialement appliquée à l'analyse non linéaire des éléments structuraux en béton soumis aux effets de cisaillement non égligeables. Cette nouvelle approche mise en œuvre dans EfiCoS (programme d'éléments finis basé sur la mécanique de l'endommagement), y compris les critères de modélisation, sont également présentés ici. Des calibrations de cette nouvelle approche en comparant les prédictions avec des données expérimentales ont été réalisées pour les murs de refend en béton armé ainsi que pour des poutres et des piliers de pont où les effets de cisaillement doivent être pris en considération. Cette nouvelle version améliorée du logiciel EFiCoS a démontrée être capable d'évaluer avec précision les paramètres associés à la performance globale tels que les déplacements, la résistance du système, les effets liés à la réponse cyclique et la quantification, l'évolution et la distribution de l'endommagement. Des résultats remarquables ont également été obtenus en référence à la détection appropriée des états limites d'ingénierie tels que la fissuration, les déformations unitaires, l'éclatement de l'enrobage, l'écrasement du noyau, la plastification locale des barres d'armature et la dégradation du système, entre autres. Comme un outil pratique d'application du DBP, des relations entre les indices d'endommagement prédits et les niveaux de performance ont été obtenus et exprimés sous forme de graphiques et de tableaux. Ces graphiques ont été développés en fonction du déplacement relatif et de la ductilité de déplacement. Un tableau particulier a été développé pour relier les états limites d'ingénierie, l'endommagement, le déplacement relatif et les niveaux de performance traditionnels. Les résultats ont démontré une excellente correspondance avec les données expérimentales, faisant de la formulation proposée et de la nouvelle version d'EfiCoS des outils puissants pour l'application de la méthodologie du DBP, dans une approche déterministe.
Resumo:
This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 – 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 – 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.
Resumo:
With the aim of producing materials with enhanced optical and photocatalytic properties, titanate nanotubes (TNTs) modified by cobalt doping (Co-TNT) and by Na+ -> Co ion-exchange (TNT/Co) were successfully prepared by a hydrothermal method. The influence of the doping level and of the cobalt position in the TNT crystalline structure was studied. Although no perceptible influence of the cobalt ion position on the morphology of the prepared titanate nanotubes was observed, the optical behaviour of the cobalt modified samples is clearly dependent on the cobalt ions either substituting the Ti4+ ions in the TiO6 octahedra building blocks of the TNT structure (doped samples) or replacing the Na+ ions between the TiO6 interlayers (ion-exchange samples). The catalytic ability of these materials on pollutant photodegradation was investigated. First, the evaluation of hydroxyl radical formation using the terephthalic acid as a probe was performed. Afterwards, phenol, naphthol yellow S and brilliant green were used as model pollutants. Anticipating real world situations, photocatalytic experiments were performed using solutions combining these pollutants. The results show that the Co modified TNT materials (Co-TNT and TNT/Co) are good catalysts, the photocatalytic performance being dependent on the Co/Ti ratio and on the structural metal location. The Co(1%)-TNT doped sample was the best photocatalyst for all the degradation processes studied.
Resumo:
Background and Purpose - Loss of motor function is common after stroke and leads to significant chronic disability. Stem cells are capable of self-renewal and of differentiating into multiple cell types, including neurones, glia, and vascular cells. We assessed the safety of granulocyte-colony-stimulating factor (G-CSF) after stroke and its effect on circulating CD34 stem cells. Methods - We performed a 2-center, dose-escalation, double-blind, randomized, placebo-controlled pilot trial (ISRCTN 16784092) of G-CSF (6 blocks of 1 to 10 g/kg SC, 1 or 5 daily doses) in 36 patients with recent ischemic stroke. Circulating CD34 stem cells were measured by flow cytometry; blood counts and measures of safety and functional outcome were also monitored. All measures were made blinded to treatment. Results - Thirty-six patients, whose mean SD age was 768 years and of whom 50% were male, were recruited. G-CSF (5 days of 10 g/kg) increased CD34 count in a dose-dependent manner, from 2.5 to 37.7 at day 5 (area under curve, P0.005). A dose-dependent rise in white cell count (P0.001) was also seen. There was no difference between treatment groups in the number of patients with serious adverse events: G-CSF, 7/24 (29%) versus placebo 3/12 (25%), or in their dependence (modified Rankin Scale, median 4, interquartile range, 3 to 5) at 90 days. Conclusions - ”G-CSF is effective at mobilizing bone marrow CD34 stem cells in patients with recent ischemic stroke. Administration is feasible and appears to be safe and well tolerated. The fate of mobilized cells and their effect on functional outcome remain to be determined. (Stroke. 2006;37:2979-2983.)
Resumo:
Foreknowledge about upcoming events may be exploited to optimize behavioural responses. In a previous work, using an eye movement paradigm, we showed that different types of partial foreknowledge have different effects on saccadic efficiency. In the current study, we investigated the neural circuitry involved in processing of partial foreknowledge using functional magnetic resonance imaging. Fourteen subjects performed a mixed antisaccade, prosaccade paradigm with blocks of no foreknowledge, complete foreknowledge or partial foreknowledge about stimulus location, response direction or task. We found that saccadic foreknowledge is processed primarily within the well-known oculomotor network for saccades and antisaccades. Moreover, we found a consistent decrease in BOLD activity in the primary and secondary visual cortex in all foreknowledge conditions compared to the no-foreknowledge conditions. Furthermore we found that the different types of partial foreknowledge are processed in distinct brain areas: response foreknowledge is processed in the frontal eye field, while stimulus foreknowledge is processed in the frontal and parietal eye field. Task foreknowledge, however, revealed no positive BOLD correlate. Our results show different patterns of engagement in the saccade-related neural network depending upon precisely what type of information is known ahead.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
Developments in theory and experiment have raised the prospect of an electronic technology based on the discrete nature of electron tunnelling through a potential barrier. This thesis deals with novel design and analysis tools developed to study such systems. Possible devices include those constructed from ultrasmall normal tunnelling junctions. These exhibit charging effects including the Coulomb blockade and correlated electron tunnelling. They allow transistor-like control of the transfer of single carriers, and present the prospect of digital systems operating at the information theoretic limit. As such, they are often referred to as single electronic devices. Single electronic devices exhibit self quantising logic and good structural tolerance. Their speed, immunity to thermal noise, and operating voltage all scale beneficially with junction capacitance. For ultrasmall junctions the possibility of room temperature operation at sub picosecond timescales seems feasible. However, they are sensitive to external charge; whether from trapping-detrapping events, externally gated potentials, or system cross-talk. Quantum effects such as charge macroscopic quantum tunnelling may degrade performance. Finally, any practical system will be complex and spatially extended (amplifying the above problems), and prone to fabrication imperfection. This summarises why new design and analysis tools are required. Simulation tools are developed, concentrating on the basic building blocks of single electronic systems; the tunnelling junction array and gated turnstile device. Three main points are considered: the best method of estimating capacitance values from physical system geometry; the mathematical model which should represent electron tunnelling based on this data; application of this model to the investigation of single electronic systems. (DXN004909)
Resumo:
Partially encased columns have significant fire resistant. However, it is not possible to assess the fire resistance of such members simply by considering the temperature of the steel. The presence of concrete increases the mass and thermal inertia of the member and the variation of temperature within the cross section, in both the steel and concrete components. The annex G of EN1994-1-2 allows to calculate the load carrying capacity of partially encased columns, for a specific fire rating time, considering the balanced summation method. New formulas will be used to calculate the plastic resistance to axial compression and the effective flexural stiffness. These two parameters are used to calculate the buckling resistance. The finite element method is used to compare the results of the elastic critical load for different fire ratings of 30 and 60 minutes. The buckling resistance is also calculated by the finite element method, using an incremental and iterative procedure. This buckling resistance is also compared with the simple calculation method, evaluating the design buckling curve that best fits the results.
Resumo:
The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks
Resumo:
Abstract. Currently, thermal energy generation through coal combustion produces ash particles which cause serious environmental problems and which are known as Fly Ash (FA). FA main components are oxides of silicon, aluminum, iron, calcium and magnesium in addition, toxic metals such as arsenic and cobalt. The use of fly ash as a cement replacement material increases long term strength and durability of concrete. In this work, samples were prepared by replacing cement by ground fly ash in 10, 20 and 30% by weight. The characterization of raw materials and microstructure was obtained by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The final results showed that the grinding process significantly improves the mechanical properties of all samples when compared replacing a mortar made with cement by ground fly ash and the reference samples without added fly ash. The beneficial effect of the ground fly ash can increase the use of this product in precast concrete industry