828 resultados para Blame of the child


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiopacity of esthetic root canal posts may impair the assessment of their fit to the root canal when using radiographic images. This study determined in vitro the radiographic density of esthetic root canal posts using digital images. Thirty-six roots of human maxillary canines were assigned to six groups (N=6 per group): Reforpost (RP); Aestheti-Plus (AP); Reforpost MIX (RPM); D.T. Light Post (LP); Reforpost Radiopaque (RPR); and White Post DC (WP). Standardized digital images of the posts were obtained in different conditions: outside the root canal, inside the canal before and after cementation using luting material, and with a tissue simulator. Analysis of variance was used to compare the radiopacity mean values among the posts outside the root canal and among the posts under the other conditions, and the t unpaired test to compare the radiopacity between the posts and the dentin, and between the posts and the root canal space. There was no statistically significant difference in radiopacity between RP and RPM, and LP and WP. AP posts showed radiopacity values significantly lower than those for dentin. No statistically significant difference was found between posts (RP and AP) and the root canal space. A statistically significant difference was observed between the luted and non-luted posts; additionally, luted posts with and without tissue simulator showed no significant differences. Most of the cement-luted posts analyzed in this study were distinguishable from the density of adjacent dentin surfaces, allowing radiographic confirmation of the fit of the post in the canal. The success of using esthetic root canal posts depends mainly on the fit of the post within the canal.[1] The radiopacity of a post allows for radiographic imaging to be used to determine the fit, an important factor in a clinical perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.