966 resultados para Biology, Molecular|Health Sciences, Pathology|Biophysics, General
Resumo:
This dissertation focuses on the leadership styles of managers, the impact these leadership styles have on the job satisfaction of staff nurses, and the proclivity of nurses to consider unionization. The aims of the dissertation include conducting a literature review on topics of leadership style, job satisfaction, and unionization; identifying and elucidating pertinent constructs with respect to shared interrelationships and how they could be measured; and developing a means of assessing if and to what extent transformational and transactional leadership styles affect nurse proclivity to unionize.^ The instrumentation selected includes the Multifactor Leadership Survey, Job Satisfaction Survey, and a newly created Union Preference Survey. Each survey instrument was evaluated as to its appropriateness to administer at a non-consultant level within a health care facility. Options other than self-administering the survey instruments include online access for participants, which provides confidentiality and encourages more responses. ^ The next part of the dissertation is a plan for health care facilities to use the survey tool by administering it themselves. The plan provides a general description of the survey tool, administering the instrument, rating the instrument, and leadership development. Integration of the three surveys is presented in a non-statistical format by coordinating the results of the three survey instrument responses. Recommendations are presented on how to improve leadership development warranted for improvement.^ The conclusions reached are that nurses’ preference for unions is influenced by the leadership style of direct report managers, as rated by staff nurses, and the nurses’ job satisfaction, which is in turn in part dependent on their managers’ leadership style. Thus, changes in leadership style can have a profound impact on nurse job satisfaction and on nurses’ preference for unionization.^
Resumo:
One of the major challenges in treating mental illness in Nigeria is that the health care facilities and mental health care professionals are not enough in number or well equipped to handle the burden of mental illness. There are several barriers to treatment for individual Nigerians which include the following: such as the lack of understanding of the root causes of mental illness, lack of financial support to get mental treatment, lack of social support (family, friends, neighbors), the fear of stigmatization concerning being labeled as mentally ill or being in association with the mentally ill, and the consultation of traditional native healers who may be unknowingly prolonging illness, rather than addressing and treating them due to lack of formal education and standardization of their treatments. Another barrier is the non-health nature of the mental health services in Nigeria. Traditional healers are essentially the mental health system. The elderly, women, and children are the most vulnerable groups in times of strife and hardships. Their mental well-being must be taken into account as well as their special needs in times of personal or societal crisis. ^ Nigerian mental health policy is geared toward forming a mental health system, but in actuality only a mental illness care system is the observed result of the policy. The government of Nigeria has drafted a mental health policy, yet its actual implementation into the Nigerian health infrastructure and society waits to be materialized. The limited health legislation or policy implementations tend to favor those who have access to these urban areas and the facilities' health services. Nigerians living in rural areas are at a disadvantage; many of them may not even be aware of services available to help them understand and treat mental illness. Perhaps, government driven health interventions geared toward mental illness in rural areas would reach an underserved Nigerians and Africans in general. Issues with political instability and limited infrastructure often hinder crucial financial resources and legislation from reaching the people that are truly in need of governmental leadership in regards to mental health policy.^ Traditional healers are a severely untapped resource in the treatment of mental illness within the Nigerian population. They are abundant within Nigerian communities and are meeting a real need for the mentally ill. However, much can be done to remove the barriers that prevent the integration of traditional healers within the mental health system and improve the quality of care they administer within the population. Mental illness is almost exclusively coped with through traditional medicine practices. Mobilization and education from each strata of Nigerian society and government as well as input from the medical community can improve how traditional medicine is utilized as a treatment for clinical illness and help alleviate the heavy burden of mental illness in Nigeria. Currently, there is no existing policy making structure for a working mental health system in Nigeria, and traditional healers are not taken into account in any formulation of mental health policy. Advocacy for mental illness is severely inadequate due to fear of stigmatization, with no formally recognized national of regional mental health association.^
Resumo:
Chagas’ disease, also called American Trypanosomiasis, is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. T. cruzi is spread by triatomine insects, commonly referred to as ‘kissing bugs.’ After the insect takes a blood meal from its animal or human host, it usually defecates near the bite wound. The parasite is present in the feces, and when rubbed into the bite wound or mucous membranes by the host, infection ensues. Chagas’ disease is highly endemic in Central and South America where it originated. Many people in these endemic areas live in poor conditions surrounded by animals, mainly dogs, that can serve as a possible link to human infection. In Chagas’ endemic countries, dogs can be used as a sentinel to infer risk for human infection. In Texas, the prevalence of Chagas’ and risk for human infection is largely unknown. This study aimed to determine the prevalence of Chagas’ disease in shelter dogs in Houston, Texas and the Rio Grande Valley region by using an immunochromatographic assay (Chagas’ Stat-Pak) to test for the presence of T. cruzi antibodies. Of the 822 samples tested, 26 were found to be positive (3.2%). In both locations, Chagas’ prevalence increased over time. This study found that dogs, especially strays, can serve as sentinels for disease activity. Public health authorities can implement this strategy to understand the level of Chagas’ activity in a defined geographic area and prevent human infection.^
Resumo:
The Internet, and specifically web 2.0 social media applications, offers an innovative method for communicating child health information to low-income parents. The main objective of this study was to use qualitative data to determine the value of using social media to reach low-income parents with child health information. A qualitative formative evaluation employing focus groups was used to determine the value of using social media for dissemination of child health information. Inclusion criteria included: (1) a parent with a child that attends a school in a designated Central Texas school district; and (2) English-speaking. The students who attend these schools are generally economically disadvantaged and are predominately Hispanic. The classic analysis strategy was used for data analysis. Focus group participants (n=19) were female (95%); White (53%), Hispanic (42%) or African American (5%); and received government assistance (63%). Most had access to the Internet (74%) and were likely to have low health literacy (53%). The most preferred source of child health information was the family pediatrician or general practitioner. Many participants were familiar with social media applications and had profiles on popular social networking sites, but used them infrequently. Objections to social media sites as sources of child health information included lack of credibility and parent time. Social media has excellent potential for reaching low-income parents when used as part of a multi-channel communication campaign. Further research should focus on the most effective type and format of messages that can promote behavior change in this population, such as story-telling. ^
Resumo:
Oral health is essential for the general well being of the individual and collectively for the health of the population. Oral health can be maintained by routine dental care and visits to dental professionals, but accessing professional dental care may be a continuing difficulty in vulnerable older adult population. Many older adults are not frequent users of dental care, though oral health is crucial to their well-being and overall health. Access to care is the timely use of personal health services to achieve the best possible health outcomes. ^ Objectives: The aims of this review are to (i) to analyze and elucidate the relationship between socio-economic disparities in gender, ethnicity, poverty status, education and the continuing public issue of access to oral care, (ii) to identify the underlying causes through which these factors can affect access to oral care. This review will provide a knowledgeable basis for development of interventions to provide adequate access to oral care in older adults and implementing policies to ensure access to oral care; through highlighting the various socio economic factors that affect access to oral care among older adults. ^ Methods: This paper used a purposeful review of literature on socioeconomic disparities in access to oral care among older adults. The references considered in this review included all the relevant articles, surveys and reports published in English language, since the year 1985 to 2010, in the United States. The articles selected were scrutinized for relevancy to the topic of access to oral care and which included discussions of the effects of gender, ethnicity, poverty status, educational status in accessing oral care. ^ Results: Evidence confirmed the continuing disparity in access to oral care among older adults. The possible links identified were gender inequality, ethnic differences, income levels and educational differences affecting access to oral care. The underlying causes linking these factors with access to oral care were established. ^ Conclusion: The analysis of the literature review findings supported the prevalence of disparities in gender, ethnicity, income and education with its possible links affecting access to oral care. The underlying causes helped to understand the reasons behind this growing issue of inaccessible oral care. Further research is needed to develop policies and target dental public health efforts towards specific problem areas ensuring equitable access to oral services and consequently, improve the health of older adults.^
Resumo:
Community health workers (CHWs) are volunteers or paid members of communities that perform outreach, patient assistance, health education, and assist in navigation of healthcare system amongst other duties. The utilization of CHWs in hospital and community setting provides health benefits to their communities while reducing cost to the overall healthcare system. ^ The general population of Texas lacks adequate access to primary care. An important indicator of such a crisis is excessive usage of emergency department services in Texas, especially by the large minority population within the state. Also, unmanaged chronic diseases have been shown to be correlated with the excessive usage of emergency services. According to a recent survey of 25 Houston metropolitan area hospitals, almost 54% of the ER visits could have been resolved in primary care settings. A Galveston based study also indicated that the ER usage was higher amongst African-Americans and Latinos. Meanwhile, 28.5% of the total ER visits were made by Latinos from the surrounding areas (Begley et al., 2007). There is substantial evidence present which indicates enormous cost-savings that CHWs have produced in Texas and nationwide through reduction in unnecessary ER visits along with better management of chronic diseases (Fedder et al, 2003). ^ This paper provides an analysis regarding the need and importance for sustainable and stable sources of funding for Community health workers (CHWs) in Texas utilizing Kingdon's model of Agenda Setting as framework. The policy analysis is also aimed at reporting on the policy process and actions taken by Children at Risk to address this critical issue. Children at Risk, a Houston based advocacy organization, has created a legislative proposal that calls on the Texas Health and Human Commission to apply for a Medicaid §§1115 waiver to provide sustainable sources of funding for CHWs, Rep. John Zerwas sponsored HB 2244 bill and it was filed on March 3, 2011. The bill would affect the use of CHWs in Texas in two ways: 1) through the establishment and operation of a program designed to train and educate CHWs 2) by creating a statewide training and certification advisory committee. The advisory committee is required in the bill to submit recommendations for providing sustainable funding and employment for CHWs. The HB 2244 failed to move out of the House Public Health committee. However, HB2244 was amended into HB 2610 introduced by Representative Guillen. The House Bill 2610 is geared towards establishing a community-based navigator program in order to assist individuals applying for public assistance through the Internet. The House Bill 2610 was signed by the Governor and will be effective September 1, 2011.^
Resumo:
Developing countries suffer from an array of diseases, of which the developed world is unfamiliar. In order to facilitate the development of community interventions and streamline NGO partnership, needs assessments in targeted areas are conducted. The purpose of this assessment was to attain baseline descriptive data to further understand the needs of the village of Robit, Ethiopia. A trained team collected data from Austin based non-profit Water to Thrive (W2T) on June 1st and 2nd, 2011 through focus groups, key informant interviews, and individual surveys. Qualitative and quantitative data were paired to affirm the results of one another through triangulation. The results identified an apparent need for health intervention and education. Malaria, water-borne disease, respiratory issues (asthma, Upper respiratory tract infections), and maternal and child health were among the evident problems in Robit. There was a clear need for midwife training as well as water sanitation, latrine building, and general illness treatment. Poor road conditions and annual flooding of Robit plays an important role in the poor health and lack of food security of the village. While some evidence of social desirability and recall bias was found in the interview and survey data, the triangulation of findings provided important insights and validity to the needs assessment. ^
Resumo:
Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays progression of GIST, but is incapable of achieving cure. Thus, most patients who initially respond to imatinib therapy eventually experience tumor progression, and have limited therapeutic options thereafter. To address imatinib-resistance and tumor progression, these studies sought to understand the molecular mechanisms that regulate apoptosis in GIST, and evaluate combination therapies that kill GISTs cells via complementary, but independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in GIST. This dissertation examined the molecular mechanism of BIM upregulation and its cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET response, and survival. Further, the intrinsic pathway of apoptosis was targeted therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. These studies contribute to the mechanistic understanding of imatinib-induced apoptosis in clinically-relevant models of GIST, and may facilitate prediction of resistance and disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that imatinib-resistance and GIST progression may reflect inadequate BIM-mediated inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests that direct engagement of apoptosis may be an effective approach to enhance the cytotoxicity of imatinib and overcome resistance.
Resumo:
Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.
Resumo:
The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are preferentially farnesylated. Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GG’d Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GG’d Ras. Our results did show that increase in GG’d K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GG’d K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GG’d K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GG’d K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GG’d K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs. Our observations suggest increased GG’d K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.
Resumo:
Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p
Resumo:
Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.
Resumo:
The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.
Resumo:
Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.
Resumo:
Metformin has antiproliferative effects through the activation of AMPK and has gained interest as an antineoplastic agent in several cancer types, although studies in endometrial cancer (EC) are limited. The aims of this project were to evaluate pathways targeted by metformin in EC, investigate mechanisms by which metformin exerts its antiproliferative effects, and explore rational combination therapies with other targeted agents. Three EC cell lines were used to evaluate metformin’s effect on cell proliferation, PI3K and Ras-MAPK signaling, and apoptosis. A xenograft mouse model was also used to evaluate the effects of metformin treatment on in vivo tumor growth. These preliminary studies demonstrated that K-Ras mutant cell lines exhibited a decreased proliferative rate, reduced tumor growth, and increased apoptosis in response to metformin compared to K-Ras wild-type cells. To test the hypothesis that mutant K-Ras may predict response to metformin, murine EC cells with loss of PTEN and expressing mutant K-RasG12D were transfected to re-express PTEN or have K-Ras silenced using siRNA. While PTEN expression did not alter response to metformin, cells in which K-Ras was silenced displayed reduced sensitivity to metformin. Mislocalization of K-Ras to the cytoplasm is associated with decreased signaling and induction of apoptosis. Metformin’s effect on K-Ras localization was analyzed by confocal microscopy in cells expressing oncogenic GFP-K-RasG12V. Metformin demonstrated concentration-dependent mislocalization of K-Ras to the cytoplasm. Mislocalization of K-Ras to the cytoplasm was confirmed in K-Ras mutant EC cells (Hec1A) by cell fractionation in response to metformin 1 and 5 mM (p=0.008 and p=0.004). This effect appears to be AMPK-independent as combined treatment with Compound C, an AMPK inhibitor, did not alter K-Ras localization. Furthermore, treatment of EC cells with metformin in combination with PI3K inhibitors resulted in a significant decrease in proliferation than either agent or metformin alone. While metformin exerts antineoplastic effects by activation of AMPK and decreased PI3K signaling, our data suggest that metformin may also disrupt localization of K-Ras and hence its signaling in an AMPK-independent manner. This has important implications in defining patients who may benefit from metformin in combination with other targeted agents, such as mTOR inhibitors.