978 resultados para Biology, Molecular|Biology, Cell|Engineering, Biomedical
Resumo:
The present study investigated the role of oxygen-derived free radicals as mediators of acute damage to rat gastric mucosae exposed to topically applied absolute ethanol. Although a hydroxyl radical scavenger, Dimethylthiourea, was noted to exhibit profound gastroprotective properties, other pretreatment regimens employing a host of known free radical scavengers, and enzyme inhibitors failed to confirm this hypothesis. Furthermore, no change in mucosal malondialdehyde, an indicator of free radical attack to cell membranes, could be detected in ethanol exposed tissues. Taken together, the present study fails to confirm that oxygen-derived free radicals mediate the gastric damaging effects of topically applied absolute ethanol. ^
Resumo:
A membrane fraction (M$\sb{\rm PS}$), enriched in Cl$\sp-$ channels, has been isolated from bovine tracheal epithelia and renal cortex homogenates by hydrophobic chromatography. The tracheal fraction shows a 37 fold enrichment of Cl$\sp-$ channels over crude tracheal homogenates by net Cl$\sp-$ measurements in membrane vesicles. Alkaline phosphatase and (Na$\sp+$ + K$\sp+$)-ATPase are not found in these membranes, suggesting that they are not apical or basolateral plasma membranes. The M$\sb{\rm PS}$ fraction exhibits a protein profile unlike that of other membrane fractions with major proteins of 200 kDa and 42 kDa, proteins of 30 to 35 kDa, and lesser amounts of other proteins. Reconstitution of M$\sb{\rm PS}$ fractions from both trachea and kidney into planar lipid bilayers demonstrates the presence of a single type of anion channel. The current-voltage relationship of this channel is linear with a slope conductance of 84 pS in symmetrical 400 mM KCl, and is identical to that of the predominant anion channel observed in tracheal apical membranes under similar conditions (Valdivia, Dubinsky, and Coronado. Science, 1988). In addition, the voltage dependence, selectivity sequence of Cl$\sp- >$ Br$\sp- \ge$ I$\sp-$, and inhibition by low concentrations of the Cl$\sp-$ channel blocker, DIDS, correspond to those of the predominant apical membrane channel. Thus, although the M$\sb{\rm PS}$ fraction appears to be of subcellular origin, it may be functionally related to an apical membrane Cl$\sp-$ permeability. When renal M$\sb{\rm PS}$ membranes were treated with the detergent octyl-glucoside (OG, 2%) and centrifuged, the supernatant, sM$\sb{\rm PS}$, showed a 2 to 7-fold enrichment in specific Cl$\sp-$ flux activity compared with the detergent treated M$\sb{\rm PS}$. These solubilized proteins were then size fractionated on a Superose 12 HPLC gel filtration column, followed by fractionation on a Mono Q HPLC anion exchange column. Fractions that eluted in high salt consistently exhibited significant Cl$\sp-$ flux activity. These fractions had protein profiles consisting of a major band at 34 kDa, a band at 66 kDa, and variable faint bands. Fractions eluting in lower salt had protein profiles consisting of a single band at 34 kDa, and often had little or no Cl$\sp-$ flux activity. However, co-reconstitution of the low salt, solely 34 kDa protein-containing Mono Q fractions with sM$\sb{\rm PS}$ resulted in an enhancement of flux activity compared to that of sM$\sb{\rm PS}$ reconstituted alone. Flux assays of active Mono Q fractions showed that the channel retained its DIDS sensitivity. Applying sM$\sb{\rm PS}$ to a DIDS-affinity column and eluting with salt resulted in fractions with protein profiles again consisting of at least one major band at 34 kDa, a band at 66 kDa, and variable faint bands. Co-reconstitution with sM$\sb{\rm PS}$ again resulted in an enhancement of activity. Thus, the 34 kDa protein appears to be a component of the M$\sb{\rm PS}$ Cl$\sp-$ channel. ^
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
The insulin receptor transduces insulin's biological signal through the tyrosine kinase present in the receptor's B subunit. The activated insulin receptor kinase then phosphorylates a series of intracellular substrate including insulin receptor substrate 1 (IRS-1), which has been shown to be the pivotal substrate for insulin receptor signal transduction. The phosphorylated tyrosine residues in IRS-1 can bind and activate the downstream effectors, many of which are SH2 domain containing proteins such as phosphotidylinositol 3-kinase, growth factor binding protein 2, and SH2 phosphotyrosine phosphatase 2. Phosphorylated synthetic IRS-1 peptides with the corresponding sequences of the IRS-1 have been shown to associate and activate their respective SH2 domain containing proteins. Another important event happening during insulin binding with the insulin receptor is that the insulin receptor rapidly undergoes internalization. However, the insulin receptor signalling and the receptor endocytosis have been studied as two independent processes. The hypothesis of the present thesis is that the insulin receptor endocytosis is involved in insulin receptor signalling and signal termination. The results of the present investigation demonstrate that insulin receptors in the earliest stage of endocytosis contain significantly greater kinase activity towards IRS-1 peptides than the receptors localized at the plasma membrane, indicating that they are potentially more capable of transducing signals. On the other hand, insulin receptors in the middle and late stage of endocytosis lose their kinase activity, suggesting that insulin receptor kinase activity inactivation and signal termination might take place in the late phase of the insulin receptor internalization. In addition, this study also found that the increased insulin receptor kinase activity in the endosomes is related to the tyrosyl phosphorylation of the specific domains of the receptor's $\beta$ subunit. ^
Resumo:
Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^
Resumo:
Since the anthrone chrysarobin oxidizes and generates free radicals, investigations were conducted to assess a possible role for free radicals or reactive oxygen species (ROS) in skin tumor promotion by chrysarobin. Epidermal glutathione levels were not noticeably altered by chrysarobin, nor did a glutathione-depleting agent enhance promotion by chrysarobin. Multiple applications of chrysarobin increased lipid peroxide levels in mouse epidermis two-fold as compared with controls. The antioxidant $\alpha$-tocopherol and the lipoxygenase inhibitor nordihydroguaiaretic acid both inhibited production of lipid peroxides by chrysarobin. The antioxidants $\alpha$-tocopherol acetate and ascorbyl palmitate effectively inhibited promotion and promoter-related effects induced by chrysarobin. Since prooxidant states can lead to increases in intracellular Ca$\sp{2+}$, the effect of two Ca$\sp{2+}$ antagonists, verapamil and TMB-8, on chrysarobin-induced promotion and promoter-related effects were investigated. Both Ca$\sp{2+}$ antagonists inhibited promotion and promoter-related effects induced by chrysarobin, suggesting a possible role for intracellular Ca$\sp{2+}$ alterations in chrysarobin-tumor promotion. Since radical generating compounds are reported to possess the ability to enhance progression of papillomas to squamous cell carcinomas (SCCs), the effects of chrysarobin on papilloma development were tested. Growth kinetics and regression of papillomas generated with limited promotion with chrysarobin were similar to what was reported for the nonradical generating promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (Aldaz et al., 1991). To test the chrysarobin's ability to enhance progression of pre-existing papillomas to SCCs, tumors were generated by initiation with dimethylbenz (a) anthracene and promotion with TPA. Then mice were treated with chrysarobin, TPA or acetone for 45 weeks. When mice treated with chrysarobin were compared to mice treated continually with TPA with similar numbers of papillomas, the number of papillomas that progressed to SCCs was similar, suggesting that papilloma burden influences the progression of papillomas to SCCs, rather than radical production. In summary, the present study suggests that chrysarobin produces oxidative stress in mouse epidermis as indicated by the generation of lipid peroxides. Antioxidants inhibited production of lipid peroxides and tumor promotion by chrysarobin. Collectively, these data suggest a role for free radicals or ROS in tumor promotion by chrysarobin. ^
Resumo:
Glomerular mesangial cells (MC) are renal vascular cells that regulate the surface area of glomerular capillaries and thus, partly control glomerular filtration rate. Clarification of the signal transduction pathways and ionic mechanisms modulating MC tone are critical to understanding the physiology and pathophysiology of these cells, and the integrative role these cells play in fluid and electrolyte homeostasis. The patch clamp technique and an assay of cell concentration were used to electrophysiologically and pharmacologically analyze the ion channels of the plasmalemmal of human glomerular MC maintained in tissue culture. Moreover, the signal transduction pathways modulating channels involved in relaxation were investigated. Three distinct K$\sp+$-selective channels were identified: two low conductance channels (9 and 65pS) maintained MC at rest, while a larger conductance (206pS) K$\sp+$ channel was quiescent at rest. This latter channel was pharmacologically and biophysically similar to the large, Ca$\sp{2+}$-activated K$\sp+$ channel (BK$\rm\sb{Ca}$) identified in smooth muscle. BK$\rm\sb{Ca}$ played an essential role in relaxation of MC. In cell-attached patches, the open probability (P$\rm\sb{o}$) of BK$\rm\sb{Ca}$ increased from a basal level of $<$0.05 to 0.22 in response to AII (100nM)-induced mobilization of cytosolic Ca$\sp{2+}$. Activation in response to contractile signals (membrane depolarization and Ca$\sp{2+}$ mobilization) suggests that BK$\rm\sb{Ca}$ acts as a low gain feedback regulator of contraction. Atrial natriuretic factor (ANF; 1.0$\mu$M) and nitroprusside (NP; 0.1mM), via the second messenger, cGMP, increase the feedback gain of BK$\rm\sb{Ca}$. In cell-attached patches bathed with physiological saline, these agents transiently activated BK$\rm\sb{Ca}$ from a basal $\rm P\sb{o}<0.05$ to peak responses near 0.50. As membrane potential hyperpolarizes towards $\rm E\sb{K}$ (2-3 minutes), BK$\rm\sb{Ca}$ inactivates. Upon depolarizing V$\rm\sb{m}$ with 140 mM KCl, db-cGMP (10$\mu$M) activated BK$\rm\sb{Ca}$ to a sustained P$\rm\sb{o}$ = 0.51. Addition of AII in the presence of cGMP further increased P$\rm\sb{o}$ to 0.82. Activation of BK$\rm\sb{Ca}$ by cGMP occured via an endogenous cGMP-dependent protein kinase (PKG): in excised, inside-out patches, PKG in the presence of Mg-ATP (0.1mM) and cGMP increased P$\rm\sb{o}$ from 0.07 to 0.39. In contrast, neither PKC nor PKA influenced BK$\rm\sb{Ca}$. Endogenous okadaic acid-sensitive protein phosphatase suppressed BK$\rm\sb{Ca}$ activity. Binning the change in P$\rm\sb{o}\ (\Delta P\sb{o}$) of BK$\rm\sb{Ca}$ in response to PKG (n = 69) established two distinct populations of channels: one that responded ($\cong$67%, $\rm\Delta P\sb{o} = 0.45 \pm 0.03$) and one that was unresponsive ($\Delta\rm P\sb{o} = 0.00 \pm 0.01$) to PKG. Activation of BK$\rm\sb{Ca}$ by PKG resulted from a decrease in the Ca$\sp{2+}$- and voltage-activation thresholds independent of sensitivities. In conclusion, mesangial BK$\rm\sb{Ca}$ channels sense both electrical and chemical signals of contraction and act as feedback regulators by repolarizing the plasma membrane. ANF and NO, via cGMP, stimulate endogenous PKG, which subsequently decreases the activation threshold of BK$\rm\sb{Ca}$ to increase the gain of this feedback regulatory signal. ^
Resumo:
Fibrillin-1 and -2 are large secreted glycoproteins that are known to be components of extracellular matrix microfibrils located in the vasculature, basement membrane and various connective tissues. These microfibrils are often associated with a superstructure known as the elastic fiber. During the development of elastic tissues, fibrillin microfibrils precede the appearance of elastin and may provide a scaffolding for the deposition and crosslinking of elastin. Using RT/PCR, we cloned and sequenced 3.85Kbp of the FBN2 gene. Five differences were found between our contig sequence and that published by Zhang et al. (1995). Like many extracellular matrix proteins, the fibrillins are modular proteins. We compared analogous domains of the two fibrillins and also members of the latent TGF-$\beta$ binding protein (LTBP) family to determine their phylogenetic relationship. We found that the two families are homologous. LTBP-2 is the most similar to the fibrillin family while FBN-1 is the most similar to the LTBP family. The fibrillin-1 carboxy terminal domain is proteolytically processed. Two eukaryotic protein expression systems, baculoviral and CHO-K1, were developed to examine the proteolytic processing of the carboxy terminal domain of the fibrillin-1 protein. Both expression systems successfully processed the domain and both processed a mutant less efficiently. In the CHO-K1 cells, processing occurred intracellularly. ^
Resumo:
The role of oxidative stress and apoptosis has recently been recognized as an important determinant in the development of a variety of diseases known to man. The oncogene BCL-2 is known to regulate sensitivity to induction of apoptosis and appears to function in an antioxidant pathway by regulating glutathione. We have investigated various steps in the oxidative stress cascade to determine possible sites of action for BCL-2. The fluorescent probes H2DCFDA, dihydroethidium and cis-parinaric acid were used to quantitate generation of peroxides, superoxide and lipid peroxidation, respectively. While each of these agents was able to detect substantial increases in oxidative stress following exposure of cells to ionizing radiation, there was no significant difference between cells expressing high or low levels of BCL-2. Investigation of mitochondrial dysfunction during apoptosis revealed a possible site of bcl-2 intervention, but, analysis of kinetic events occurring during apoptosis suggested that the observed effect is not in the direct apoptotic effector pathway. When glutathione was studied, localization to the nucleus was observed in cells overexpressing BCL-2 that did not occur in cells lacking BCL-2. Additionally, nuclear accumulation of glutathione was sufficient to block granzyme b-mediated nuclear DNA fragmentation, poly (ADP-ribose) polymerase cleavage and caspase activity suggesting that nuclear accumulation of glutathione via a bcl-2 dependent process is functionally relevant to suppression of apoptosis. Thus, a model system emerges where BCL-2 is able to regulate a cell's ability to prevent apoptosis by modifying the cell's antioxidant systems at the organelle level to compensate for oxidative stresses placed upon it. ^
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^
Resumo:
Retinal ganglion cells carry signals from the eye to the brain. One of the most common types of ganglion cells is parasol cells. They have larger dendritic trees, somas and axons than other ganglion cells. While much was known about parasol cell light responses, little was known about how these responses are formed. One possibility is that they receive input from a unique set of local circuit neurons that have similar responses. The goal was to identify these presynaptic neurons and study their synaptic connectivity.^ Ganglion cells receive input from bipolar and amacrine cells, but there are numerous subtypes of each. To determine which of these were most likely to provide input to parasol cells, the parasol cells were intracellularly-injected and then various bipolar and amacrine cells were immunolabeled and the tissue analyzed using a confocal microscope. DB3 bipolar cells labeled with antibodies to calbindin made extensive contacts with OFF parasol cells. Antibodies to recover in labeled flat midget bipolar cells (FMB). They made only random contacts with OFF parasol cells, and they are not expected to provide significant input. Type DB2 bipolar cells and FMB cells labeled with antibodies to excitatory amino acid transporter-2 made extensive contacts with OFF parasol cells. This suggests that DB2 bipolar cells are likely to provide input to parasol cells.^ Two types of amacrine cells were labeled in material containing injected parasol cells. Cholinergic amacrine cells were labeled with antibodies to choline acetyltransferase, and they made extensive contacts with ON parasol cells. The large amacrine cells labeled with antibodies to a precursor of cholecystokinin were among the amacrine cells that are tracer-coupled to parasol cells.^ From electron microscopic (EM) analysis, most of the synapses made by DB3 axons were found on varicosities. Some postsynaptic and presynaptic amacrine cells resembled AII amacrine cells. Others were relatively electron-lucent and may be cholinergic amacrine cells or cholecystokinin-containing amacrine cells. Gap junctions were found between neighboring DB3 axons. They occurred whenever two axons contacted each other, and the junctions were as large as the area of contact. In double-label EM experiments, DB3 axons made synapses onto OFF parasol cells. ^
Resumo:
The purpose of these studies was to investigate the role of interferon-beta (IFN-$\beta$) in angiogenesis. IFN-$\alpha/\beta$ have been implicated in inhibiting a number of steps in the angiogenic pathway. We examined the balance of angiogenesis-regulating molecules in several systems including human infantile hemangiomas, UV-B irradiated mice, and dorsal incisional wound healing in mice. In each system, epidermal hyperplasia and cutaneous angiogenesis were directly related to the expression of positive angiogenic factors (bFGF and VEGF) and inversely related to the expression of endogenous IFN-$\beta.$ The re-expression of IFN-$\beta$ correlated with tumor regression and/or resolution of wound healing. In contrast to control mice, UV-B-induced cutaneous angiogenesis and hyperplasia persisted in IFN-$\alpha/\beta$ receptor knock-out mice. In normal mice, endogenous IFN-$\beta$ was expressed by all differentiated epithelial cells exposed to environmental stimuli. The expression of endogenous IFN-$\beta$ was necessary but insufficient for complete differentiation of epidermal keratinocytes.^ The tumor organ microenvironment can regulate angiogenesis. Human bladder carcinoma cells growing in the bladder wall of nude mice express high levels of bFGF, VEGF, and MMP-9, have higher vascular densities, and produce metastases to lymph nodes and lungs, whereas the same cells growing subcutaneously express less bFGF, VEGF, and MMP-9, have lower vascular densities, and do not metastasize. IFN-$\alpha/\beta$ was found to inhibit bFGF and MMP-9 expression both in vitro and in vivo in human bladder carcinoma cells. Systemic therapy with human IFN-$\alpha$ of human bladder cancer cells growing orthotopically in nude mice, resulted in decreased vascularity, tumorigenicity, and metastasis as compared to saline treated mice. Human bladder cancer cells resistant to the antiproliferative effects of IFN were transfected with the human IFN-$\beta$ gene. Hu-IFN-$\beta$ transfected cells expressed significantly less bFGF protein and gelatinase activity than parental or control-transfected cells and did not grow at ectopic or orthotopic sites. Collectively the data provide direct evidence that IFN-$\alpha/\beta$ can inhibit angiogenesis via down-regulation of angiogenesis-stimulating cytokines. ^
Resumo:
Estrogens have been implicated in the normal and neoplastic development of the mammary gland. Although estradiol is essential for early mammary differentiation, its role in postnatal ductal morphogenesis is poorly defined. We have found that neonatal estradiol exposure promotes precocious ductal outgrowth and terminal end bud formation in 21 day-old female mice. In contrast to this precocious phenotype, day 21 estradiol-treated epithelium, transplanted into control host fatpads, grows more slowly than control epithelium. Western and immunohistochemical (IHC) analyses indicate that neonatally-estrogenized glands have significantly less total ER than controls at days 7 and 21, and significantly more stromal ER at day 35. Estrogen receptor α (ER) is present in the gland when treatment is initiated at day 1. We propose that the premature activation of ER by neonatal estradiol exposure, during this critical perinatal period, is a key factor in the alteration of mammary growth and ER expression. ^ To address the role of ER function in mammary morphogenesis, we have developed an in vitro system to study the effect of estradiol exposure in vivo. Keratin and ER-positive mammary epithelial cell lines from 7, 21 and 35 day-old oil or estradiol treated mice have been established. Cell lines derived from estradiol-treated mice grow significantly slower than cells from control glands. Although the level of ER expressed by each cell line is correlated to its rate of growth, epithelial growth in vitro is estradiol-independent and antiestrogen-insensitive. Estradiol-induced transcription from an ERE-reporter in transiently-transfected cell lines confirms the functionality of the ER detected by western and IHC. However, there are no differences in estradiol-stimulated transcription between cell lines. ^ In conclusion, neonatal estradiol treatment alters the pattern of ER expression in mammary epithelial and stromal cells in vivo, and the growth of mammary epithelial cells in vivo and in vitro. When grown outside of the estrogenized host, exposed epithelium grows more slowly than the control. Therefore, an extra-epithelial factor is necessary for enhanced epithelial growth. Our model, which couples an in vivo-in vitro approach, can be used in the future to identify factors involved in the period of early mammary outgrowth and carcinogen susceptibility. ^
Resumo:
Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^