993 resultados para Biofuel, handling, pretreatment, traffic fuel, China
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.
Resumo:
ABSTRACT Quantitative assessment of soil physical quality is of great importance for eco-environmental pollution and soil quality studies. In this paper, based on the S-theory, data from 16 collection sites in the Haihe River Basin in northern China were used, and the effects of soil particle size distribution and bulk density on three important indices of theS-theory were investigated on a regional scale. The relationships between unsaturated hydraulic conductivityKi at the inflection point and S values (S/hi) were also studied using two different types of fitting equations. The results showed that the polynomial equation was better than the linear equation for describing the relationships between -log Ki and -logS, and -log Kiand -log (S/hi)2; and clay content was the most important factor affecting the soil physical quality index (S). The variation in the S index according to soil clay content was able to be fitted using a double-linear-line approach, with decrease in the S index being much faster for clay content less than 20 %. In contrast, the bulk density index was found to be less important than clay content. The average S index was 0.077, indicating that soil physical quality in the Haihe River Basin was good.
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this light, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the anount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims hppeared to have occurred randomly. However, using data from a subsample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of wcirning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an examples such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.
Resumo:
Iowa Traffic Control Devices and Pavement Markings: A Manual for Cities and Counties has been developed to provide state and local transportation agencies with suggestions and examples related to traffic control devices and pavement markings. Both rural and urban applications are included. The primary source of information for this document is the Manual on Uniform Traffic Control Devices (MUTCD), but many additional references have also been used. A complete listing of these is included in the appendix to this manual, and the reader is invited to consult these references for more in-depth information. The contents of this manual are not intended to represent standard practice or to imply legal requirements for installation in any particular manner. This document should be used as a supplement to the MUTCD, not as a substitute for any requirements contained therein. Engineering judgement should be applied to all decisions regarding traffic control devices and pavement markings. All references to the MUTCD in this manual apply to the millennium edition. The reader should be aware that many millennium revisions are allowed phase-in periods by the Federal Highway Administration (FHWA), ranging from two to ten years. These extended compliance periods should be considered when making decisions regarding traffic control devices and pavement markings. A new addition to the MUTCD, Part 5, “Traffic Control Devices for Low-Volume Roads,” also contains valuable recommendations for signing and marking low volume roads. This manual is presented in an easy to use threering format. Topics included in the complete guide manual may not apply to all jurisdictions and can easily be removed or modified as desired. Desired millennium MUTCD sections may be added for quick reference using the divider at the end of this document. Contents may also be available on CD-ROM in the future.
Resumo:
The objective of this project was to promote and facilitate analysis and evaluation of the impacts of road construction activities in Smart Work Zone Deployment Initiative (SWZDI) states. The two primary objectives of this project were to assess urban freeway work-zone impacts through use of remote monitoring devices, such as radar-based traffic sensors, traffic cameras, and traffic signal loop detectors, and evaluate the effectiveness of using these devices for such a purpose. Two high-volume suburban freeway work zones, located on Interstate 35/80 (I-35/I-80) through the Des Moines, Iowa metropolitan area, were evaluated at the request of the Iowa Department of Transportation (DOT).