977 resultados para Binomial theorem.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce mémoire, on s'intéresse à l'action du groupe des transformations affines et des homothéties sur l'axe du temps des systèmes différentiels quadratiques à foyer faible d'ordre trois, dans le plan. Ces systèmes sont importants dans le cadre du seizième problème d'Hilbert. Le diagramme de bifurcation a été produit à l'aide de la forme normale de Li dans des travaux de Andronova [2] et Artès et Llibre [4], sans utiliser le plan projectif comme espace des paramètres ni de méthodes globales. Dans [7], Llibre et Schlomiuk ont utilisé le plan projectif comme espace des paramètres et des notions à caractère géométrique global (invariants affines et topologiques). Ce diagramme contient 18 portraits de phase et certains de ces portraits sont répétés dans des parties distinctes du diagramme. Ceci nous mène à poser la question suivante : existe-t-il des systèmes distincts, correspondant à des valeurs distinctes de paramètres, se trouvant sur la même orbite par rapport à l'action du groupe? Dans ce mémoire, on prouve un résultat original : l'action du groupe n'est pas triviale sur la forme de Li (théorème 3.1), ni sur la forme normale de Bautin (théorème 4.1). En utilisant le deuxième résultat, on construit l'espace topologique quotient des systèmes quadratiques à foyer faible d'ordre trois par rapport à l'action de ce groupe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory (including the Diagonal Argument, the Continuum Hypothesis and Cantor’s Theorem) and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing (completed) infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is to look the effect of change in the ordering of the Fourier system on Szegö’s classical observations of asymptotic distribution of eigenvalues of finite Toeplitz forms.This is done by checking proofs and Szegö’s properties in the new set up.The Fourier system is unconditional [19], any arbitrary ordering of the Fourier system forms a basis for the Hilbert space L2 [-Π, Π].Here study about the classical Szegö’s theorem.Szegö’s type theorem for operators in L2(R+) and check its validity for certain multiplication operators.Since the trigonometric basis is not available in L2(R+) or in L2(R) .This study discussed about the classes of orderings of Haar System in L2 (R+) and in L2(R) in which Szegö’s Type TheoreT Am is valid for certain multiplication operators.It is divided into two sections. In the first section there is an ordering to Haar system in L2(R+) and prove that with respect to this ordering, Szegö’s Type theorem holds for general class of multiplication operators Tƒ with multiplier ƒ ε L2(R+), subject to some conditions on ƒ.Finally in second section more general classes of ordering of Haar system in L2(R+) and in L2(R) are identified in such a way that for certain classes of multiplication operators the asymptotic distribution of eigenvalues exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case