945 resultados para Bilayer ceramic
Resumo:
With the increasing importance given to building rehabilitation comes the need to create simple, fast and non-destructive testing methods (NDT) to identify problems and for anomaly diagnosis. Ceramic tiles are one of the most typical kinds of exterior wall cladding in several countries; the earliest known examples are Egyptian dating from 4000 BC. This type of building facade coating, though being quite often used in due to its aesthetic and architectural characteristics, is one of the most complex that can be applied given the several parts from which it is composed; hence, it is also one of the most difficult to correctly diagnose with expeditious methods. The detachment of ceramic wall tiles is probably the most common and difficult to identify anomaly associated with this kind of cladding and it is also definitely the one that can compromise security the most. Thus, it is necessary to study a process of inspection more efficient and economic than the currently used which often consist in semi-destructive methods (the most common is the pull off test), that can only be used in a small part of the building at a time, allowing some assumptions of what can the rest of the cladding be like. Infrared thermography (IRT) is a NDT with a wide variety of applications in building inspection that is becoming commonly used to identify anomalies related with thermal variations in the inspected surfaces. Few authors have studied the application of IRT in anomalies associated with ceramic claddings claiming that the presence of air or water beneath the superficial layer will influence the heat transfer in a way that can be detected in both a qualitative and a quantitative way by the thermal camera, providing information about the state of the wall in a much broad area per trial than other methods commonly used nowadays. This article intends to present a review of the state of art of this NDT and its potentiality in becoming a more efficient way to diagnose anomalies in ceramic wall claddings.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo:
This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.
Resumo:
Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.
Resumo:
A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.
Resumo:
Memristive switching serves as the basis for a new generation of electronic devices. Memristors are two-terminal devices in which the current is turned on and off by redistributing point defects, e.g., vacancies, which is difficult to control. Memristors based on alternative mechanisms have been explored, but achieving both the high On/Off ratio and the low switching energy desirable for use in electronics remains a challenge. Here we report memristive switching in a La_(0.7)Ca_(0.3)MnO_(3)/PrBa_(2)Cu_(3)O_(7) bilayer with an On/Off ratio greater than 103 and demonstrate that the phenomenon originates from a new type of interfacial magnetoelectricity. Using results from firstprinciples calculations, we show that an external electric-field induces subtle displacements of the interfacial Mn ions, which switches on/off an interfacial magnetic “dead” layer, resulting in memristive behavior for spin-polarized electron transport across the bilayer. The interfacial nature of the switching entails low energy cost about of a tenth of atto Joule for write/erase a “bit”. Our results indicate new opportunities for manganite/cuprate systems and other transition-metal-oxide junctions in memristive applications.
Resumo:
In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.
Resumo:
Purpose: This was a retrospective cohort study designed to evaluate the clinical performance of ceramicveneered zirconia frameworks. Materials and Methods: Patients were recruited according to defined inclusion criteria. All patients were checked every 4 months from the time of definitive rehabilitation. At the end of 2013, all patients were rescheduled and rechecked for study purposes. The restorative procedures assessment was performed by previously established methods. The primary outcomes were the survival and success rates of the prosthesis. Descriptive statistics were used for the patient's demographics, implant distribution, and occurrence of complications. To study the survival and success of the prostheses, a Cox Regression analysis was used with a model constructed in a forward conditional stepwise mode. Predictive variables were included in the model, and adjusted survival curves were obtained for each outcome. Results: From 2008 to 2013, 75 patients were rehabilitated with 92 implant-supported, screw-retained, full-arch ceramic-veneered zirconia framework rehabilitations. The range of follow-up was between 6 months and 5 years. From the 92 full implant-supported screw-retained full-arch rehabilitations, Cox regression analysis indicated that within a 5-year time frame, the probability of framework fracture, major chipping, minor chipping, or any of the former combined to occur was 17.6%, 46.5%, 69.2%, and 90.5%, respectively. Conclusion: Results suggest zirconia as a suitable material for framework structure in implant-supported, full-arch rehabilitations. However, it experiences a high incidence of technical complications, mainly due to ceramic chipping. Further clinical studies should aim to ascertain the effects of clinical features and manufacturing procedures on the survival rates of these prostheses. © 2016 by Quintessence Publishing Co Inc.
Resumo:
The primary objective of this research was to perform an in vitro assessment of the ability of microscale topography to alter cell behaviour, with specific regard to producing favourable topography in an orthopaedic ceramic material suitable for implantation in the treatment of arthritis. Topography at microscale and nanoscale alters the bioactivity of the material. This has been used in orthopaedics for some time as seen with optimal pore size in uncemented hip and knee implants. This level of topography involves scale in hundreds of micrometres and allows for the ingrowth of tissue. Topography at smaller scale is possible thanks to progressive miniaturisation of technology. A topographic feature was created in a readily available clinically licensed polymer, Polycaprolcatone (PCL). The effect of this topography was assessed in vitro. The same topography was transferred to the latest generation composite orthopaedic ceramic, zirconia toughened alumina (ZTA). The fidelity of reproduction of the topography was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These investigations showed more accurate reproduction of the topography in PCL than ZTA with some material artefacts in the ZTA. Cell culture in vitro was performed on the patterned substrates. The response of osteoprogenitor cells was assessed using immunohistochemistry, real-time polymerase chain reaction and alizarin staining. These results showed a small effect on cell behaviour. Finally metabolic comparison was made of the effects created by the two different materials and the topography in each. The results have shown a reproducible topography in orthopaedic ceramics. This topography has demonstrated a positive osteogenic effect in both polycaprolactone and zirconia toughened alumina across multiple assessment modalities.
Resumo:
A small group of companies including Intel, Microsoft, and Cisco have used "platform leadership" with great effect as a means for driving innovation and accelerating market growth within their respective industries. Prior research in this area emphasizes that trust plays a critical role in the success of this strategy. However, many of the categorizations of trust discussed in the literature tend to ignore or undervalue the fact that trust and power are often functionally equivalent, and that the coercion of weaker partners is sometimes misdiagnosed as collaboration. In this paper, I use case study data focusing on Intel's shift from ceramic/wire-bonded packaging to organic/C4 packaging to characterize the relationships between Intel and its suppliers, and to determine if these links are based on power in addition to trust. The case study shows that Intel's platform leadership strategy is built on a balance of both trust and a relatively benevolent form of power that is exemplified by the company's "open kimono" principle, through which Intel insists that suppliers share detailed financial data and highly proprietary technical information to achieve mutually advantageous objectives. By explaining more completely the nature of these inter-firm linkages, this paper usefully extends our understanding of how platform leadership is maintained by Intel, and contributes to the literature by showing how trust and power can be used simultaneously within an inter-firm relationship in a way that benefits all of the stakeholders.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.
Resumo:
Ceramic membranes are of particular interest in many industrial processes due to their ability to function under extreme conditions while maintaining their chemical and thermal stability. Major structural deficiencies under conventional fabrication approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using larger titanate nanofibres and smaller boehmite nanofibres. This yields a radical change in membrane texture. The differences in the porous supports have no substantial influences on the texture of resulting membranes. The membranes with top layer of nanofibres coated on different porous supports by spin-coating method have similar size of the filtration pores, which is in a range of 10–100 nm. These membranes are able to effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. The retention can attain more than 95%, while maintaining a high flux rate about 900 L m-2 h. The calcination after spin-coating creates solid linkages between the fibres and between fibres and substrate, in addition to convert boehmite into -alumina nanofibres. This reveals a new direction in membrane fabrication.
Resumo:
A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.