975 resultados para Bifurcação Hopf-zero


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New measurements by the PHENIX experiment at the Relativistic Heavy Ion Collider for. production at midrapidity as a function of transverse momentum ((PT)) and collision centrality in root s(NN) = 200 GeV Au + Au and p + p collisions are presented. They indicate nuclear modification factors (R(AA)) which are similar in both magnitude and trend to those found in earlier pi(0) measurements. Linear fits to R(AA) as a function of (PT) in 5-20 GeV/c show that the slope is consistent with zero within two standard deviations at all centralities, although a slow rise cannot be excluded. Having different statistical and systematic uncertainties, the pi(0) and eta measurements are complementary at high (PT); thus, along with the extended (PT) range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p + p collisions at root s = 200 GeV performed by the PHENIX Experiment at the Relativistic Heavy Ion Collider. The J/psi polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p(T) < 5 GeV/c and vertical bar y vertical bar < 0.35. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The double helicity asymmetry in neutral pion production for p(T) = 1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, Delta G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of mu 2 = 4 GeV(2) a next to leading order QCD analysis gives Delta G([0.02,0.3]) = 0.2, with a constraint of -0.7 < Delta G([0.02,0.3]) < 0.5 at Delta chi(2) = 9 (similar to 3 sigma) for the sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for the measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta G constraint on the choice of the theoretical scale, a dominant uncertainty in these predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a temperature- dependent Hartree- Fock- Bogoliubov- Popov theory to analyze the properties of the equilibrium states of an homogeneous mixture of bosonic atoms in two different hyperfine states and in the presence of an internal Josephson coupling. In our calculation we show that the bistable structure of the equilibrium states at zero temperature changes when we increase the temperature of the system. We investigate two mechanisms of the disappearance of bistability. In one, near the collapse of one of the equilibrium states, the acoustical branch becomes unstable and the gap of the optical branch goes to zero. In the other, there is no divergent behavior of the system and bistability disappears at a temperature in which the two equilibrium states merge at a zero- population fraction imbalance. When we further increase the temperature, this state remains as a unique equilibrium configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic europium chalcogenide semiconductors EuTe and EuSe are investigated by the spectroscopy of second harmonic generation (SHG) in the vicinity of the optical band gap formed by transitions involving the 4f and 5d electronic orbitals of the magnetic Eu(2+) ions. In these materials with centrosymmetric crystal lattice the electric-dipole SHG process is symmetry forbidden so that no signal is observed in zero magnetic field. Signal appears, however, in applied magnetic field with the SHG intensity being proportional to the square of magnetization. The magnetic field and temperature dependencies of the induced SHG allow us to introduce a type of nonlinear optical susceptibility determined by the magnetic-dipole contribution in combination with a spontaneous or induced magnetization. The experimental results can be described qualitatively by a phenomenological model based on a symmetry analysis and are in good quantitative agreement with microscopic model calculations accounting for details of the electronic energy and spin structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic nanoparticles (NP) of magnetite (Fe(3)O(4)) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through transmission electron microscopy (TEM), magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78%, 76%, and 65%) and the DA sample with 63% of Fe(3)O(4). Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter similar to 5.5 nm. Magnetization measurements, performed in zero-field cooled (ZFC) and field cooled processes under different external magnetic fields H, exhibited a maximum at a given temperature T(B) in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature T(B) decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase in T(B). The observed behavior is related to the dipolar interaction between NP, which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility chi(ac) measurements, where the temperature in which chi' peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H versus T(B)/T(B) (H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below T(B), M versus H curves show a coercive field (H(C)) that increases monotonically with decreasing temperature. The saturation magnetization (M(S)) follows the Bloch's law and values of M(S) at room temperature as high as 78 emu/g were estimated, a result corresponding to similar to 80% of the bulk value. The overlap of M/M(S) versus H/T curves for a given sample and the low H(C) at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/M(S) versus H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3311611]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.