974 resultados para Bidirectional modulation
Resumo:
Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^
Resumo:
The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against microfoulers in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline - were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected (and thereby shaped) the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.
Resumo:
The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.
Resumo:
Multicarrier transmission such as OFDM (orthogonal frequency division multiplexing) is an established technique for radio transmission systems and it can be considered as a promising approach for next generation wireless systems. However, in order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users' scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user's channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
This paper presents an automatic modulation classifier for electronic warfare applications. It is a pattern recognition modulation classifier based on statistical features of the phase and instantaneous frequency. This classifier runs in a real time operation mode with sampling rates in excess of 1 Gsample/s. The hardware platform for this application is a Field Programmable Gate Array (FPGA). This AMC is subsidiary of a digital channelised receiver also implemented in the same platform.
Resumo:
Multiuser multiple-input multiple-output (MIMO) downlink (DL) transmission schemes experience both multiuser interference as well as inter-antenna interference. The singular value decomposition provides an appropriate mean to process channel information and allows us to take the individual user’s channel characteristics into account rather than treating all users channels jointly as in zero-forcing (ZF) multiuser transmission techniques. However, uncorrelated MIMO channels has attracted a lot of attention and reached a state of maturity. By contrast, the performance analysis in the presence of antenna fading correlation, which decreases the channel capacity, requires substantial further research. The joint optimization of the number of activated MIMO layers and the number of bits per symbol along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers has to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput
Resumo:
In this paper we propose the use of Discrete Cosine Transform Type-III (DCT3) for multicarrier modulation. There are two DCT3 (even and odd) and, for each of them, we derive the expressions for both prefix and suffix to be appended into each data symbol to be transmitted. Moreover, DCT3 are closely related to the corresponding inverse DCT Type-II even and odd. Furthermore, we give explicit expressions for the 1-tap per subcarrier equalizers that must be implemented at the receiver to perform the channel equalization in the frequency-domain. As a result, the proposed DCT3-based multicarrier modulator can be used as an alternative to DFT-based systems to perform Orthogonal Frequency-Division Multiplexing or Discrete Multitone Modulation
Resumo:
Power amplifier supplied with constant supply voltage has very low efficiency in the transmitter. A DC-DC converter in series with a linear regulator can be used to obtain voltage modulation. Since this converter should be able to change the output voltage very fast, a multiphase buck converter with a minimum time control strategy is proposed. To modulate supply voltage of the envelope amplifier, the multiphase converter works with some particular duty cycle (i/n, i=1, 2 ... n, n is the number of phase) to generate discrete output voltages, and in these duty cycles the output current ripple can be completely cancelled. The transition times for the minimum time are pre-calculated and inserted in a look-up table. The theoretical background, the system model that is necessary in order to calculate the transition times and the experimental results obtained with a 4-phase buck prototype are given
Resumo:
Phase-sensitive optical time-domain reflectometry (?OTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. We show in this Letter that modulation instability (MI) can induce a position-dependent signal fading in long-range ?OTDR over conventional optical fibers. This fading leads to a complete masking of the interference signal recorded at certain positions and therefore to a sensitivity loss at these positions. We illustrate this effect both theoretically and experimentally. While this effect is detrimental in the context of distributed vibration analysis using ?OTDR, we also believe that the technique provides a clear and insightful way to evidence the Fermi?Pasta?Ulam recurrence associated with the MI process.
Resumo:
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.
Resumo:
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals
Resumo:
The low frequency modulation of the laser source (menor que30KHz) allows the generation of a pulsed signal that intermittently excites the gold nanorods. The temperature curves obtained for different frequencies and duty cycles of modulation but with equal average power and identical laser parameters, show that the thermal behavior in continuous wave and modulation modes is the same. However, the cell death experiments suggest that the percentage of death is higher in the cases of modulation. This observation allows us to conclude that there are other effects in addition to temperature that contribute to the cellular death. The mechanical effects like sound or pressure waves are expected to be generated from thermal expansion of gold nanorods. In order to study the behavior and magnitude of these processes we have developed a measure device based on ultrasound piezoelectric receivers (25KHz) and a lock-in amplifier that is able to detect the sound waves generated in samples of gold nanorods during laser irradiation providing us a voltage result proportional to the pressure signal. The first results show that the pressure measurements are directly proportional to the concentration of gold nanorods and the laser power, therefore, our present work is focused on determine the real influence of these effects in the cell death process.