951 resultados para Biaxial flexural strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-house finite element solver. The method allows determine the macroscopic stiffness, the internal forces in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buckling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are studied. Several of them are characterized here for the first time with a particular attention on the role that the cell wall plays on the stiffness and strength properties. The method, automated in a computational routine, has been used to develop material property charts that help to gain insight into the performance of the lattices under investigation. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of vibration-based damage detection of concrete structures efficient damage models are needed to better understand changes in the vibration properties of cracked structures. These models should quantitatively replicate the damage mechanisms in concrete and easily be used as damage detection tools. In this paper, the flexural cracking behaviour of plain concrete prisms subject to monotonic and cyclic loading regimes under displacement control is tested experimentally and modelled numerically. Four-point bending tests on simply supported un-notched prisms are conducted, where the cracking process is monitored using a digital image correlation system. A numerical model, with a single crack at midspan, is presented where the cracked zone is modelled using the fictitious crack approach and parts outside that zone are treated in a linear-elastic manner. The model considers crack initiation, growth and closure by adopting cyclic constitutive laws. A multi-variate Newton-Raphson iterative solver is used to solve the non-linear equations to ensure equilibrium and compatibility at the interface of the cracked zone. The numerical results agree well with the experiments for both loading scenarios. The model shows good predictions of the degradation of stiffness with increasing load. It also approximates the crack-mouth-opening-displacement when compared with the experimental data of the digital image correlation system. The model is found to be computationally efficient as it runs full analysis for cyclic loading in less than 2. min, and it can therefore be used within the damage detection process. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shearing rate is among the most important factors affecting the undrained shear strength of clays. In particular, for seismic or storm-wave loading conditions, the shearing rate is much higher than that used in many common laboratory or field tests. The testing program described here evaluates the effect of peripheral velocity on the undrained strength inferred from the shear vane test. The study was conducted on a lightly cemented bentonite-kaolinite mixture manufactured in the laboratory, which possesses many characteristics similar to those of natural materials. Results show that the shear strength increases with increasing peripheral velocity, while the residual shear strength seems to be nearly independent of rotation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sandwich panel with a core made from solid pyramidal struts is a promising candidate for multifunctional application such as combined structural and heat-exchange function. This study explores the performance enhancement by making use of hollow struts, and examines the elevation in the plastic buckling strength by either strain hardening or case hardening. Finite element simulations are performed to quantify these enhancements. Also, the sensitivity of competing collapse modes to tube geometry and to the depth of case hardening is determined. A comparison with other lattice materials reveals that the pyramidal lattice made from case hardened steel tubes outperforms lattices made from solid struts of aluminium or titanium and has a comparable strength to a core made from carbon fibre reinforced polymers. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional alkali-activated slag (AAS) cements suffer from significant drying shrinkage which hinders their widespread application. This paper investigates the potential of using commercial reactive MgO to reduce the drying shrinkage of AAS. Two different reactive MgOs were added at a content of 2.5-7.5 wt% of the slag, which was activated by sodium hydroxide and water-glass. The strength and the drying shrinkage of those reactive MgO modified AAS (MAAS) pastes were measured up to 90 days. It is found that MgO with high reactivity accelerated the early hydration of AAS, while MgO with medium reactivity had little effect. The drying shrinkage was significantly reduced by highly reactive MgO but it also generated severe cracking under the dry condition. On the other hand, medium-reactive MgO only showed observable shrinkage-reducing effect after one month, but the cement soundness was improved. The hydration products, analysed by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy techniques, showed that Mg was mainly incorporated in the hydrotalcite-like phases. It is concluded that the curing conditions and the time of hydrotalcite-like phases formation and their quantity are crucial to the developed strength and shrinkage reduction properties of MAAS, which are highly dependent on the reactivity and content of reactive MgO. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.