939 resultados para Biased sampling
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Background There is a paucity of data describing the prevalence of childhood refractive error in the United Kingdom. The Northern Ireland Childhood Errors of Refraction study, along with its sister study the Aston Eye Study, are the first population-based surveys of children using both random cluster sampling and cycloplegic autorefraction to quantify levels of refractive error in the United Kingdom. Methods Children aged 6–7 years and 12–13 years were recruited from a stratified random sample of primary and post-primary schools, representative of the population of Northern Ireland as a whole. Measurements included assessment of visual acuity, oculomotor balance, ocular biometry and cycloplegic binocular open-field autorefraction. Questionnaires were used to identify putative risk factors for refractive error. Results 399 (57%) of 6–7 years and 669 (60%) of 12–13 years participated. School participation rates did not vary statistically significantly with the size of the school, whether the school is urban or rural, or whether it is in a deprived/non-deprived area. The gender balance, ethnicity and type of schooling of participants are reflective of the Northern Ireland population. Conclusions The study design, sample size and methodology will ensure accurate measures of the prevalence of refractive errors in the target population and will facilitate comparisons with other population-based refractive data.
Resumo:
The use of quantitative methods has become increasingly important in the study of neurodegenerative disease. Disorders such as Alzheimer's disease (AD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This article reviews the advantages and limitations of the different methods of quantifying the abundance of pathological lesions in histological sections, including estimates of density, frequency, coverage, and the use of semiquantitative scores. The major sampling methods by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are also described. In addition, the data analysis methods commonly used to analyse quantitative data in neuropathology, including analyses of variance (ANOVA) and principal components analysis (PCA), are discussed. These methods are illustrated with reference to particular problems in the pathological diagnosis of AD and dementia with Lewy bodies (DLB).
Resumo:
When a textured surface is modulated in depth and illuminated, the level of illumination varies across the surface, producing coarse-scale luminance modulations (LM) and amplitude modulation (AM) of the fine-scale texture. If the surface has an albedo texture (reflectance variation) then the LM and AM components are always in-phase, but if the surface has a relief texture the phase relation between LM and AM varies with the direction and nature of the illuminant. We showed observers sinusoidal luminance and amplitude modulations of a binary noise texture, in various phase relationships, in a paired-comparisons design. In the first experiment, the combinations under test were presented in different temporal intervals. Observers indicated which interval contained the more depthy stimulus. LM and AM in-phase were seen as more depthy than LM alone which was in turn more depthy than LM and AM in anti-phase, but the differences were weak. In the second experiment the combinations under test were presented in a single interval on opposite obliques of a plaid pattern. Observers were asked to indicate the more depthy oblique. Observers produced the same depth rankings as before, but now the effects were more robust and significant. Intermediate LM/AM phase relationships were also tested: phase differences less than 90 deg were seen as more depthy than LM-only, while those greater than 90 deg were seen as less depthy. We conjecture that the visual system construes phase offsets between LM and AM as indicating relief texture and thus perceives these combinations as depthy even when their phase relationship is other than zero. However, when different LM/AM pairs are combined in a plaid, the signals on the obliques are unlikely to indicate corrugations of the same texture, and in this case the out-of-phase pairing is seen as flat. [Supported by the Engineering and Physical Sciences Research Council (EPSRC)].