929 resultados para Biased correlated random walk
Resumo:
Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between -60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→-30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes.
Resumo:
Self-biased Terfenol-D 2-2 composites exhibit high frequency of actuation and good magnetomechanical properties; however, their potential usefulness is highly dependent on their magnetoacoustic properties, particularly for ultrasonic applications. The speed of sound, c, and its variation with an externally applied magnetic field have been measured for the above composites using a 10 MHz longitudinal pulse. When the sound propagates parallel to the layers, the acoustic impedance was found to be independent of the external applied field, and lower than that for bulk Terfenol-D. The magnetomechanical coupling coefficient was found to be generally low (up to 0.35) and dependent on the volume ratio of materials, being higher for the specimens with greater content of Terfenol-D. The low attenuation, low acoustic impedance, and high frequency of actuation make this structure an interesting alternative for use in underwatersound navigation and ranging and other ultrasonic applications. When the pulse propagates orthogonal to the layers, c was found to vary by up to 3% with the application of an external field, but the acoustic attenuation was found to be very high due to the multiple reflections produced at the interfaces between the layers. This latter phenomenon has been calculated theoretically. © 2007 American Institute of Physics.
Resumo:
A key issue in the fabrication of Terfenol-D 2-2 composites with internal magnetic field biasing is the selection of appropriate constituent materials to obtain high magnetostriction while keeping optimum magnetomechanical properties. The fabrication process is costly and time consuming and, therefore, numerical methods to predict their properties are useful. In this paper, finite element analysis (FEA) of the magnetostriction of such composites has been carried out using the commercial package ABAQUS. It has been shown that composites fabricated using Nd2Fe14B for the permanent magnetic material layers possess the highest internal fields within the Terfenol-D layers, although the overall strain of these composites is limited to approximately 800 × 10-6 due to the high elastic modulus of Nd2Fe14B. Simulations showed that the strain can be enhanced by choosing a different material with a lower elastic modulus for the permanent magnetic layer even though the internal field is lower. The simulations showed that the strain can increase by 12% if the Nd 2Fe14B layer is substituted by SmCo5; by 23% if it is substituted by Sm2Co17; and by 35% if it is substituted by Alnico. © 2008 IEEE.
Resumo:
A new approximate solution for the first passage probability of a stationary Gaussian random process is presented which is based on the estimation of the mean clump size. A simple expression for the mean clump size is derived in terms of the cumulative normal distribution function, which avoids the lengthy numerical integrations which are required by similar existing techniques. The method is applied to a linear oscillator and an ideal bandpass process and good agreement with published results is obtained. By making a slight modification to an existing analysis it is shown that a widely used empirical result for the asymptotic form of the first passage probability can be deduced theoretically.
Resumo:
Using a chiral nematic liquid crystal with a negative dielectric anisotropy, it is possible to switch between band-edge laser emission and random laser emission with an electric field. At low frequencies (1 kHz), random laser emission is observed as a result of scattering due to electro-hydrodynamic instabilities. However, band-edge laser emission is found to occur at higher frequencies (5 kHz), where the helix is stabilized due to dielectric coupling. These results demonstrate a method by which the linewidth of the laser source can be readily controlled externally (from 4 nm to 0.5 nm) using electric fields. © 2012 American Institute of Physics.
Resumo:
Smectic A liquid crystals, based upon molecular structures that consist of combined siloxane and mesogenic moieties, exhibit strong multiple scattering of light with and without the presence of an electric field. This paper demonstrates that when one adds a laser dye to these compounds it is possible to observe random laser emission under optical excitation, and that the output can be varied depending upon the scattering state that is induced by the electric field. Results are presented to show that the excitation threshold of a dynamic scattering state, consisting of chaotic motion due to electro-hydrodynamic instabilities, exhibits lower lasing excitation thresholds than the scattering states that exist in the absence of an applied electric field. However, the lowest threshold is observed for a dynamic scattering state that does not have the largest scattering strength but which occurs when there is optimization of the combined light absorption and scattering properties. © 2012 American Institute of Physics.
Resumo:
We study the role of connectivity on the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination relative to that of an isostatic network $\delta z$; a floppy network has $\delta z<0$, while a stiff network has $\delta z>0$. Under the influence of an externally applied load we observe that the response of both floppy and rigid network are controlled by the same critical point, corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the amplitude of non-affine displacements, and the network stiffening as a function of $\delta z$, derive these theoretically and make predictions for the mechanical response of glasses and fibrous networks.
Resumo:
MOTIVATION: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct-but often complementary-information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured through parameters that describe the agreement among the datasets. RESULTS: Using a set of six artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real Saccharomyces cerevisiae datasets. In the two-dataset case, we show that MDI's performance is comparable with the present state-of-the-art. We then move beyond the capabilities of current approaches and integrate gene expression, chromatin immunoprecipitation-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques-as well as to non-integrative approaches-demonstrate that MDI is competitive, while also providing information that would be difficult or impossible to extract using other methods.
Resumo:
This paper considers the estimation of statistics of displacement of a vibrating rectangular plate with random wave scatterers. The influence of uncertainty is investigated using point impedance theory. Coherent boundary effects are seen, which decrease when the number of scatterers increases. The boundary effect is investigated using images and the first side and corner reflections are found to be a minimum requirement to estimate the spatial correlation. Statistics for point driven response are investigated under the assumption that the statistics of the natural frequencies follow those of the Gaussian Orthogonal Ensemble (GOE). The estimates are compared with Monte Carlo simulation results, and they show good agreement. © 2012 Elsevier Ltd. All rights reserved.