1000 resultados para Beekeeping assessment
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
Common coral trout Plectropomus leopardus is an iconic fish of the Great Barrier Reef (GBR) and is the most important fish for the commercial fishery there. Most of the catch is exported live to Asia. This stock assessment was undertaken in response to falls in catch sizes and catch rates in recent years, in order to gauge the status of the stock. It is the first stock assessment ever conducted of coral trout on the GBR, and brings together a multitude of different data sources for the first time. The GBR is very large and was divided into a regional structure based on the Bioregions defined by expert committees appointed by the Great Barrier Reef Marine Park Authority (GBRMPA) as part of the 2004 rezoning of the GBR. The regional structure consists of six Regions, from the Far Northern Region in the north to the Swains and Capricorn–Bunker Regions in the south. Regions also closely follow the boundaries between Bioregions. Two of the northern Regions are split into Subregions on the basis of potential changes in fishing intensity between the Subregions; there are nine Subregions altogether, which include four Regions that are not split. Bioregions are split into Subbioregions along the Subregion boundaries. Finally, each Subbioregion is split into a “blue” population which is open to fishing and a “green” population which is closed to fishing. The fishery is unusual in that catch rates as an indicator of abundance of coral trout are heavily influenced by tropical cyclones. After a major cyclone, catch rates fall for two to three years, and rebound after that. This effect is well correlated with the times of occurrence of cyclones, and usually occurs in the same month that the cyclone strikes. However, statistical analyses correlating catch rates with cyclone wind energy did not provide significantly different catch rate trends. Alternative indicators of cyclone strength may explain more of the catch rate decline, and future work should investigate this. Another feature of catch rates is the phenomenon of social learning in coral trout populations, whereby when a population of coral trout is fished, individuals quickly learn not to take bait. Then the catch rate falls sharply even when the population size is still high. The social learning may take place by fish directly observing their fellows being hooked, or perhaps heeding a chemo-sensory cue emitted by fish that are hooked. As part of the assessment, analysis of data from replenishment closures of Boult Reef in the Capricorn–Bunker Region (closed 1983–86) and Bramble Reef in the Townsville Subregion (closed 1992–95) estimated a strong social learning effect. A major data source for the stock assessment was the large collection of underwater visual survey (UVS) data collected by divers who counted the coral trout that they sighted. This allowed estimation of the density of coral trout in the different Bioregions (expressed as a number of fish per hectare). Combined with mapping data of all the 3000 or so reefs making up the GBR, the UVS results provided direct estimates of the population size in each Subbioregion. A regional population dynamic model was developed to account for the intricacies of coral trout population dynamics and catch rates. Because the statistical analysis of catch rates did not attribute much of the decline to tropical cyclones, (and thereby implied “real” declines in biomass), and because in contrast the UVS data indicate relatively stable population sizes, model outputs were unduly influenced by the unlikely hypothesis that falling catch rates are real. The alternative hypothesis that UVS data are closer to the mark and declining catch rates are an artefact of spurious (e.g., cyclone impact) effects is much more probable. Judging by the population size estimates provided by the UVS data, there is no biological problem with the status of coral trout stocks. The estimate of the total number of Plectropomus leopardus on blue zones on the GBR in the mid-1980s (the time of the major UVS series) was 5.34 million legal-sized fish, or about 8400 t exploitable biomass, with an 2 additional 3350 t in green zones (using the current zoning which was introduced on 1 July 2004). For the offshore regions favoured by commercial fishers, the figure was about 4.90 million legal-sized fish in blue zones, or about 7700 t exploitable biomass. There is, however, an economic problem, as indicated by relatively low catch rates and anecdotal information provided by commercial fishers. The costs of fishing the GBR by hook and line (the only method compatible with the GBR’s high conservation status) are high, and commercial fishers are unable to operate profitably when catch rates are depressed (e.g., from a tropical cyclone). The economic problem is compounded by the effect of social learning in coral trout, whereby catch rates fall rapidly if fishers keep returning to the same fishing locations. In response, commercial fishers tend to spread out over the GBR, including the Far Northern and Swains Regions which are far from port and incur higher travel costs. The economic problem provides some logic to a reduction in the TACC. Such a reduction during good times, such as when the fishery is rebounding after a major tropical cyclone, could provide a net benefit to the fishery, as it would provide a margin of stock safety and make the fishery more economically robust by providing higher catch rates during subsequent periods of depressed catches. During hard times when catch rates are low (e.g., shortly after a major tropical cyclone), a change to the TACC would have little effect as even a reduced TACC would not come close to being filled. Quota adjustments based on catch rates should take account of long-term trends in order to mitigate variability and cyclone effects in data.
Resumo:
During July/August 2010, 28 Christmas Island flying foxes (Pteropus melanotus natalis) were captured and anesthetized for examination, sample collection, and release to determine the potential role of disease in recent population declines. Measurements and samples were taken for morphologic, hematologic, biochemical, and parasitologic analysis. These are the first blood reference ranges reported for this species. These data are being used to inform investigations into conservation status and population management strategies for the Christmas Island flying fox.
Resumo:
Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes.
Resumo:
In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.
Resumo:
Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). Conclusion: This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Resumo:
In this thesis the use of the Bayesian approach to statistical inference in fisheries stock assessment is studied. The work was conducted in collaboration of the Finnish Game and Fisheries Research Institute by using the problem of monitoring and prediction of the juvenile salmon population in the River Tornionjoki as an example application. The River Tornionjoki is the largest salmon river flowing into the Baltic Sea. This thesis tackles the issues of model formulation and model checking as well as computational problems related to Bayesian modelling in the context of fisheries stock assessment. Each article of the thesis provides a novel method either for extracting information from data obtained via a particular type of sampling system or for integrating the information about the fish stock from multiple sources in terms of a population dynamics model. Mark-recapture and removal sampling schemes and a random catch sampling method are covered for the estimation of the population size. In addition, a method for estimating the stock composition of a salmon catch based on DNA samples is also presented. For most of the articles, Markov chain Monte Carlo (MCMC) simulation has been used as a tool to approximate the posterior distribution. Problems arising from the sampling method are also briefly discussed and potential solutions for these problems are proposed. Special emphasis in the discussion is given to the philosophical foundation of the Bayesian approach in the context of fisheries stock assessment. It is argued that the role of subjective prior knowledge needed in practically all parts of a Bayesian model should be recognized and consequently fully utilised in the process of model formulation.
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
Purpose To determine the association between conjunctival goblet cell density (GCD) assessed using in vivo laser scanning confocal microscopy and conjunctival impression cytology in a healthy population. Methods Ninety (90) healthy participants undertook a validated 5-item dry eye questionnaire, non-invasive tear film break-up time measurement, ocular surface fluorescein staining and phenol red thread test. These tests where undertaken to diagnose and exclude participants with dry eye. The nasal bulbar conjunctiva was imaged using laser scanning confocal microscopy (LSCM). Conjunctival impression cytology (CIC) was performed in the same region a few minutes later. Conjunctival goblet cell density was calculated as cells/mm2. Results There was a strong positive correlation of conjunctival GCD between LSCM and CIC (ρ = 0.66). Conjunctival goblet cell density was 475 ± 41 cells/mm2 and 466 ± 51 cells/mm2 measured by LSCM and CIC, respectively. Conclusions The strong association between in vivo and in vitro cellular analysis for measuring conjunctival GCD suggests that the more invasive CIC can be replaced by the less invasive LSCM in research and clinical practice.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Puccinia psidii, the causal agent of myrtle rust, was first recorded from Latin America more than 100 years ago. It occurs on many native species of Myrtaceae in Latin America and also infects non-native plantation-grown Eucalyptus species in the region. The pathogen has gradually spread to new areas including Australia and most recently South Africa. The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to South African forestry, to infection by P. psidii. In addition, risk maps were compiled based on suitable climatic conditions and the occurrence of potential susceptible tree species. This made it possible to identify the season when P. psidii would be most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species commonly planted in South Africa show good potential for yielding disease-tolerant material for future planting. Myrtle rust is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical climates, are more conducive to outbreaks of the pathogen.
Resumo:
In visual object detection and recognition, classifiers have two interesting characteristics: accuracy and speed. Accuracy depends on the complexity of the image features and classifier decision surfaces. Speed depends on the hardware and the computational effort required to use the features and decision surfaces. When attempts to increase accuracy lead to increases in complexity and effort, it is necessary to ask how much are we willing to pay for increased accuracy. For example, if increased computational effort implies quickly diminishing returns in accuracy, then those designing inexpensive surveillance applications cannot aim for maximum accuracy at any cost. It becomes necessary to find trade-offs between accuracy and effort. We study efficient classification of images depicting real-world objects and scenes. Classification is efficient when a classifier can be controlled so that the desired trade-off between accuracy and effort (speed) is achieved and unnecessary computations are avoided on a per input basis. A framework is proposed for understanding and modeling efficient classification of images. Classification is modeled as a tree-like process. In designing the framework, it is important to recognize what is essential and to avoid structures that are narrow in applicability. Earlier frameworks are lacking in this regard. The overall contribution is two-fold. First, the framework is presented, subjected to experiments, and shown to be satisfactory. Second, certain unconventional approaches are experimented with. This allows the separation of the essential from the conventional. To determine if the framework is satisfactory, three categories of questions are identified: trade-off optimization, classifier tree organization, and rules for delegation and confidence modeling. Questions and problems related to each category are addressed and empirical results are presented. For example, related to trade-off optimization, we address the problem of computational bottlenecks that limit the range of trade-offs. We also ask if accuracy versus effort trade-offs can be controlled after training. For another example, regarding classifier tree organization, we first consider the task of organizing a tree in a problem-specific manner. We then ask if problem-specific organization is necessary.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.