996 resultados para Basic Word Types
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
Depth-dose curves in LiF detectors of different effective thicknesses, together with their responses, were calculated for typical nuclear medicine radiation fields with 99mTc, 18F and 90Y sources. Responses were analysed in function of the radionuclide, detector effective thickness and irradiation geometry. On the other hand the results of the nuclear medicine measurement campaign of the ORAMED project were presented focussing on the dose distribution across the hand and on the appropriate position to wear the dosimeter.According to the results, thin LiF detectors provide better responses in all cases. Its use is essential for 18F, since thick dosimeters can underestimate Hp(0.07) up to a 50% because of the very inhomogeneous dose deposition on the active layer. The preliminary results of the measurement campaign showed that the index tip of the non-dominant hand is usually the most exposed position among the 22 monitored positions. It was also found that, in average, wrist dosimeters are likely to underestimate the maximum skin dose by a factor of the order of 20. This factor is reduced to around 6 for a ring dosimeter worn on the base of the index of the non-dominant hand. Thus, for typical nuclear medicine procedures, the base of the index of the non-dominant hand is recommended as the best monitoring option.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
Abstract : The Notch pathway is an important regulator of differentiation and carcinogenesis. In keratinocytes and possibly other specific epithelial cell types, it acts as tumour suppressor. Expression of endogenous Notch1 gene is markedly reduced in keratinocyte-derived squamous cell carcinoma (SCC) and cervical cancer cells, as well as in prostate cancer cell lines, and this difference is, at least in part, at the transcriptional level. Little is known on transcriptional control of the Notch1 gene with the exception that it is a p53-target. Our work focused on the mechanisms involved in the different transcription level of the Notch1 gene in normal versus cancer cells. We show that the fully active minimal Notch1 promoter is differentially controlled in normal versus cancer cells. It consists of two distinct regions, one downstream of the transcription start site, which is likely to bind the basic transcription apparatus, and one upstream region characterized by highly GC-rich sequence. This latter region binds Sp/KLF family members, specifically Spa and KLF4, which is upregulated in cancer cells. This is functionally significant as KLF4 overexpression is sufficient to downmodulate Notchl gene transcription, while KLF4 knockdown, in combination with Spa, results in Notch1 upregulation. Control of Notch1 by KLF4/Sp3 is independent of p53. Biochemically, KLF4/Sp3 seem to affect preferentially the initiation step of Notch1 gene transcription, while p53 controls both initiation and elongation steps. Thus, the Notch1 gene is a negative Sp3/KLF4-target and this mechanism contributes, in parallel with p53, to Notch1 downregulation in cancer. Résumé : La voie de signalisation induite par Notch est considérablement impliquée dans la différenciation des cellules et dans la carcinogénèse. Dans les kératinocytes ainsi que dans d'autres types cellulaires de l'épithelium, il agit comme suppresseur de tumeur. L'expression endogène de Notch1 est remarquablement réduite dans les cellules du carcinome spino-cellulaire et du cancer du col de l'utérus ou dans les lignées cellulaires du cancer de la prostate. Cette différence s'explique, du moins en partie, par le niveau de transcription. Peu de choses sont connues sur le contrôle transcriptionnel de Notch1 à l'exception du fait qu'il soit une cible de p53. Notre travail s'est concentré sur les mécanismes impliqués dans la transcription de Notch1, mécanismes qui diffèrent entre les cellules normales et les cellules cancéreuses. Nous avons trouvé la plus petite région du promoteur de Notch1 qui est suffisante pour induire un haut niveau transcriptionnel et qui est contrôlée différemment dans les cellules normales et les cellules cancéreuses. Elle est constituée de deux régions distinctes: une en aval du site de départ de la transcription, qui lie probablement le complexe de base pour la transcription, et une en amont caractérisée par une séquence riche en GC. Cette région lie les membres de la famille Sp/KLF, spécifiquement Sp3 et KLF4, qui sont surexprimés dans les cellules cancéreuses. Ceci est fonctionnellement significatif car la surexpression de KLF4 dans les kératinocytes est suffisante pour diminuer la transcription de Notch1, alors que l'inhibition de KLF4 et de Spa, résulte en une augmentation de Notch1. En outre, le contrôle de Notch1 par KLF4 et Spa est indépendant de p53. Biochimiquement, KLF4 et Spa semblent plutôt affecter l'initiation de la transcription de Notch1 alors que p53 contrôle aussi bien l'initiation que l'élongation. En conclusion, le gène Notch1 est inhibé par Spa et KLF4: ce mécanisme contribue, en parallèle à p53, à diminuer l'expression de Notch1 dans les cellules cancéreuses.
Resumo:
Aquest document mostra el procés de transformació d'un arxiu de Microsoft Word a un document PDF de la forma més accessible possible.
Resumo:
Aquest document és una guia de recomanacions per crear contingut accessible amb el programa Microsoft Word 2003.
Resumo:
Aquest document és una guia de recomanacions per crear contingut accessible amb el programa Microsoft Word 2007.