969 resultados para Barrow, Alaska, USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nursery areas for juvenile fishes are often important for determining recruitment in marine populations by providing habitats that can maximize growth and thereby minimize mortality. Pacific ocean perch (POP, Sebastes alutus) have an extended juvenile period where they inhabit rocky nursery habitats. We examined POP nursery areas to link growth potential to recruitment. Juvenile POP were captured from nursery areas in 2004 and 2008, and estimated growth rates ranged from −0.19 to 0.60 g day−1 based on differences in size between June and August. Predicted growth rates from a bioenergetics model ranged from 0.05 to 0.49 g day−1 and were not significantly different than observed. Substrate preferences and the distribution of their preferred habitats were utilized to predict the extent of juvenile POP nursery habitat in the Gulf of Alaska. Based on densities of fish observed on underwater video transects and the spatial extent of nursery areas, we predicted 278 and 290 million juvenile POP were produced in 2004 and 2008. Growth potential for juvenile POP was reconstructed using the bioenergetics model, spring zooplankton bloom timing and duration and bottom water temperature for 1982–2008. When a single outlying recruitment year in 1986 was removed, growth potential experienced by juvenile POP in nursery areas was significantly correlated to the recruitment time-series from the stock assessment, explaining ∼30% of the variability. This research highlights the potential to predict recruitment using habitat-based methods and provides a potential mechanism for explaining some of the POP recruitment variability observed for this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. This late 1970s regime shift in the Gulf of Alaska was followed by another shift in the late 1980s, not as pervasive as the 1977 shift, but which nevertheless did not return to the prior state. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our study demonstrates that ocean biogeochemical models are capable of simulating the late 1970s shift, indicating an abrupt increase in sea surface temperature forcing followed by an abrupt decrease in nutrients and biological productivity. This predicted shift is consistent among all the models, although some of them exhibit an abrupt transition (i.e. a significant shift from one year to the next), whereas others simulate a smoother transition. Some models further suggest that the late 1980s shift was constrained by changes in mixed layer depth. Our study demonstrates that ocean biogeochemical can successfully simulate regime shifts in the Gulf of Alaska region, thereby providing better understanding of how changes in physical conditions are propagated from lower to upper trophic levels through bottom-up controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the USA today, the precipitous rise of new financial mechanisms for capitalisation of firms as well as the merger and acquisition of others, especially risk equity capital through venture capitalist and investment banking, has sparked growth and helped to bring the economy out of the 1990s recession into a robust continuous growth pattern well positioned for the next century. The scenario is not new. For the venture capitalists of ''Silicon Valley'' in California, the experience is not new. They have seen the new industries arise before, like a phoenix from ashes of ruin, despair and even failure. Venture capital poured into high tech start-up companies has been an enormous source of financial support for the entrepreneurs who head new and growing companies. The mid-1990s marked the most dramatic increase yet recorded. Indicators, such as the NASDAQ document, outlined the solid and continuous growth in high tech industries. The paper discusses investment in US corporations within the context of governance and management of the company. Discussion about the various forms of finance are related to the organisation and management of the US corporation. Critical to any firm today are its ability to find innovative, new products or services. A growing literature on resource-base framework for analysis will be discussed as part of the firm's development of research for commercialisation. The results of a recent survey further shed light on the relationship between corporate financial management and allocated resources for research and development as the ''engine'' for new product development and therefore corporate market share and growth. The conclusion is that more financial mechanisms will be created and changed within US corporate systems to adjust, grow, and expand companies in the global economic arena, as the inevitable economic pattern leads to mergers, consolidations, and increasing cooperation and alliances among firms.