929 resultados para BLOCKING ELECTRODES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of computational simulations of tungsten-inert-gas and metal-inert-gas welding. The arc plasma and the electrodes (including the molten weld pool when necessary) are included self-consistently in the computational domain. It is shown, using three examples, that it would be impossible to accurately estimate the boundary conditions on the weld-pool surface without including the arc plasma in the computational domain. First, we show that the shielding gas composition strongly affects the properties of the arc that influence the weld pool: heat flux density, current density, shear stress and arc pressure at the weld-pool surface. Demixing is found to be important in some cases. Second, the vaporization of the weld-pool metal and the diffusion of the metal vapour into the arc plasma are found to decrease the heat flux density and current density to the weld pool. Finally, we show that the shape of the wire electrode in metal-inert-gas welding has a strong influence on flow velocities in the arc and the pressure and shear stress at the weld-pool surface. In each case, we present evidence that the geometry and depth of the weld pool depend strongly on the properties of the arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the effect of plasterboard joints on the fire performance of cold-formed steel walls. Plasterboard joints are unavoidable. However, they can be arranged in a way that they do not significantly influence the fire performance of cold-formed steel walls. Hence a research study into the effects of plasterboard joints on the fire performance of plasterboard lined cold-formed steel walls was undertaken using both full-scale fire tests and numerical studies. In this study a back-blocking technique was used to eliminate the plasterboard joints being located over the studs. Instead plasterboard joints were used between studs with 150 mm wide plasterboards as back-blocks. Both experimental and numerical results from this study show that the fire resistance rating of single plasterboard lined cold-formed steel walls can be increased by 25% through the use of a back-blocking joint arrangement in comparison to the traditional plasterboard joint arrangement over the studs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety at railway level crossings (RLX) is one part of a wider picture of safety within the whole transport system. Governments, the rail industry and road organisations have used a variety of countermeasures for many years to improve RLX safety. New types of interventions are required in order to reduce the number of crashes and associated social costs at railway crossings. This paper presents the results of a large research program which aimed to assess the effectiveness of emerging Intelligent Transport Systems (ITS) interventions, both on-road and in-vehicle based, to improve the safety of car drivers at RLXs in Australia. The three most promising technologies selected from the literature review and focus groups were tested in an advanced driving simulator to provide a detailed assessment of their effects on driver behaviour. The three interventions were: (i) in-vehicle visual warning using a GPS/smartphone navigation-like system, (ii) in-vehicle audio warning and; (iii) on-road intervention known as valet system (warning lights on the road surface activated as a train approaches). The effects of these technologies on 57 participants were assessed in a systematic approach focusing on the safety of the intervention, effects on the road traffic around the crossings and driver’s acceptance of the technology. Given that the ITS interventions were likely to provide a benefit by improving the driver’s awareness of the crossing status in low visibility conditions, such conditions were investigated through curves in the track before arriving at the crossing. ITS interventions were also expected to improve driver behaviour at crossings with high traffic (blocking back issue), which were also investigated at active crossings. The key findings are: (i) interventions at passive crossings are likely to provide safety benefits; (ii) the benefits of ITS interventions on driver behaviour at active crossings are limited; (iii) the trialled ITS interventions did not show any issues in terms of driver distraction, driver acceptance or traffic delays; (iv) these interventions are easy to use, do not increase driver workload substantially; (v) participants’ intention to use the technology is high and; (vi) participants saw most value in succinct messages about approaching trains as opposed to knowing the RLX locations or the imminence of a collision with a train.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two kinds of floating electrode, floating dielectric barrier covered electrode (FDBCE) and floating pin electrode (FPE), which can enhance the performance of plasma jet are reported. The intense discharge between the floating electrode and power electrode decreased the voltage to trigger the plasma jet substantially. The transition of plasma bullet from ring shape to disk shape in the high helium concentration region happened when the floating electrode was totally inside the powered ring electrode. The enhanced electric field between propagating plasma bullet and ground electrode is the reason for this transition. The double plasma bullets happened when part of the FDBCE was outside the powered ring electrode, which is attributed to the structure and surface charge of FDBCE. As part of the FPE was outside the powered ring electrode, the return stroke resulted in a single intensified plasma channel between FPE and ground electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μ h = 0.024 cm 2 V -1 s -1 and μ e = 0.056 cm 2 V -1 s -1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT(2B) receptors. Conversely, direct agonist stimulation of 5-HT(2B) receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT(2B) receptors and (iii) a selective 5-HT(2B) agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT(2B) receptors. The 5-HT(2B) receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT(2B) receptor should be considered as a new tractable target in the combat against depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCc1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b5 (Cyt b5) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b 5 were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s -1) of Cyt b5 to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electropolymerized films of teraaminometallophthalocyanines (MTAPc; M = Ni and Co) with amino groups at α- (4α-MTAPc) and β- (4β-MTAPc) positions were prepared on glassy carbon (GC) and indium tin oxide (ITO) electrodes. It was found that the electropolymerization growth rate of 4α-MTAPc was less than that of 4β-MTAPc prepared under identical conditions. Further, the surface coverage of the polymerized 4β-MTAPc film was greater than that of 4α-MTAPc polymerized film. Atomic force microscopy (AFM), X-ray diffraction (XRD) and UV–visible spectroscopic studies were carried out for the polymerized films of 4α-NiIITAPc (p-4α-NiIITAPc) and 4β-NiIITAPc (p-4β-NiIITAPc) alone because both Ni(II) and Co(II) polymerized films show similar trend in electropolymerization and surface coverage values. AFM images show that p-4α-NiIITAPc film contains islands and the thickness of this film was nearly three times less than that of p-4β-NiIITAPc. XRD patterns for the two polymerized films reveal that p-4β-NiIITAPc film was relatively more crystalline than p-4α-NiIITAPc film. Further, the compactness of these films was scrutinized from their barrier properties toward [Fe(CN)6]3−/4− redox couple. The differences in the polymerization growth rate of 4α-MTAPc and 4β-MTAPc, and the thicknesses of the resultant polymerized films suggest that unlike 4β-MTAPc one or two amino groups might have not involved in electropolymerization in the case of 4α-MTAPc. Further, the influence of surface coverage on the electrocatalytic properties of the polymerized films was studied by taking p-4β-CoIITAPc and p-4α-CoIITAPc films as examples. The electrocatalytic oxygen reduction current was almost same at both the electrodes suggesting that only the surface species were involved in the electrocatalytic reduction of oxygen.