912 resultados para Avtex Fibers, Inc.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"March 1996"--P. iii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a response to burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane: methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical quantum memory scheme using two narrow-linewidth cavities and some optical fibers is proposed. The cavities are connected via an optical fiber, and the gap of each cavity can be adjusted to allow photons with a certain bandwidth to transmit through or reflect back. Hence, each cavity acts as a shutter and the photons can be stored in the optical fiber between the cavities at will. We investigate the feasibility of using this device in storing a single photon. We estimate that with current technology storage of a photon qubit for up to 50 clock cycles (round trips) could be achieved with a probability of success of 85%. We discuss how this figure could be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain anatomy is characterized by dramatic growth from the end of the second trimester through the neonatal stage. The characterization of normal axonal growth of the white matter tracts has not been well-documented to date and could provide important clues to understanding the extensive inhomogeneity of white matter injuries in cerebral palsy (CP) patients. However, anatomical studies of human brain development during this period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor magnetic resonance imaging (DTMRI) can reveal detailed anatomy of white matter. We acquired diffusion tensor images (DTI) of postmortem fetal brain samples and in vivo neonates and children. Neural structures were annotated in two-dimensional (2D) slices, segmented, measured, and reconstructed three-dimensionally (3D). The growth status of various white matter tracts was evaluated on cross-sections at 19-20 gestational weeks, and compared with 0-month-old neonates and 5- to 6-year-old children. Limbic, commissural, association, and projection white matter tracts and gray matter structures were illustrated in 3D and quantitatively characterized to assess their dynamic changes. The overall pattern of the time courses for the development of different white matter is that limbic fibers develop first and association fibers last and commissural and projection fibers are forming from anterior to posterior part of the brain. The resultant DTNIRI-based 3D human brain data will be a valuable resource for human brain developmental study and will provide reference standards for diagnostic radiology of premature newborns. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Setf-supported asymmetric hollow-fiber membranes of mixed oxygen-ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) were prepared by a combined phase-inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA-citrate complexing process followed by thermal treatment at 600 degrees C. The powder was dispersed in a polymer solution and then extruded into hollow-fiber precursors through a spinneret. ne fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow-fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol-m(-2).s(-1) at 950 degrees C with the sweep gas flow rate of 0.522 mol(.)m(-2).s(-1). To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. (c) 2006 American Institute of Chemical Engineers.