922 resultados para Automobile driving at night.
Resumo:
Heart rate variability (HRV) and cardiorespiratory coordination, i.e. the temporal interplay between oscillations of heartbeat and respiration, reflect information related to the cardiovascular and autonomic nervous system. The purpose of this study was to investigate the relationship between spectral measures of HRV and measures of cardiorespiratory coordination. In 127 subjects from a normal population a 24 h Holter ECG was recorded. Average heart rate (HR) and the following HRV parameters were calculated: very low (VLF), low (LF) and high frequency (HF) oscillations and LF/HF. Cardiorespiratory coordination was quantified using average respiratory rate (RespR), the ratio of heart rate and respiratory rate (HRR), the phase coordination ratio (PCR) and the extent of cardiorespiratory coordination (PP). Pearson's correlation coefficient r was used to quantify the relationship between each pair of the variables across all subjects. HR and HRR correlated strongest during daytime (r = 0.89). LF/HF and PP showed a negative correlation to a reasonable degree (r = -0.69). During nighttime sleep these correlations decreased whereas the correlation between HRR and RespR (r = -0.47) as well as between HRR and PCR (r = 0.73) increased substantially. In conclusion, HRR and PCR deliver considerably different information compared to HRV measures whereas PP is partially linked reciprocally to LF/HF.
Resumo:
With the aid of an impressive case report, the authors describes the diagnostic clues for the understanding of sweating during the night hours. Many internistic and psychological disorders may cause heavy sweating during night hours. But also substances used by patients dietary habits as well as excessive intake of alcohol may be involved. The therapeutic approaches are numerous and are discussed at the end.
The ambulatory arterial stiffness index is not affected by night-time blood pressure characteristics
Resumo:
Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.
Resumo:
Nearly 22 million Americans operate as shift workers, and shift work has been linked to the development of cardiovascular disease (CVD). This study is aimed at identifying pivotal risk factors of CVD by assessing 24 hour ambulatory blood pressure, state anxiety levels and sleep patterns in 12 hour fixed shift workers. We hypothesized that night shift work would negatively affect blood pressure regulation, anxiety levels and sleep patterns. A total of 28 subjects (ages 22-60) were divided into two groups: 12 hour fixed night shift workers (n=15) and 12 hour fixed day shift workers (n=13). 24 hour ambulatory blood pressure measurements (Space Labs 90207) were taken twice: once during a regular work day and once on a non-work day. State anxiety levels were assessed on both test days using the Speilberger’s State Trait Anxiety Inventory. Total sleep time (TST) was determined using self recorded sleep diary. Night shift workers demonstrated increases in 24 hour systolic (122 ± 2 to 126 ± 2 mmHg, P=0.012); diastolic (75 ± 1 to 79 ± 2 mmHg, P=0.001); and mean arterial pressures (90 ± 2 to 94 ± 2mmHg, P<0.001) during work days compared to off days. In contrast, 24 hour blood pressures were similar during work and off days in day shift workers. Night shift workers reported less TST on work days versus off days (345 ± 16 vs. 552 ± 30 min; P<0.001), whereas day shift workers reported similar TST during work and off days (475 ± 16 minutes to 437 ± 20 minutes; P=0.231). State anxiety scores did not differ between the groups or testing days (time*group interaction P=0.248), suggesting increased 24 hour blood pressure during night shift work is related to decreased TST, not short term anxiety. Our findings suggest that fixed night shift work causes disruption of the normal sleep-wake cycle negatively affecting acute blood pressure regulation, which may increase the long-term risk for CVD.
Resumo:
The present study was conducted to determine the effects of different variables on the perception of vehicle speeds in a driving simulator. The motivations of the study include validation of the Michigan Technological University Human Factors and Systems Lab driving simulator, obtaining a better understanding of what influences speed perception in a virtual environment, and how to improve speed perception in future simulations involving driver performance measures. Using a fixed base driving simulator, two experiments were conducted, the first to evaluate the effects of subject gender, roadway orientation, field of view, barriers along the roadway, opposing traffic speed, and subject speed judgment strategies on speed estimation, and the second to evaluate all of these variables as well as feedback training through use of the speedometer during a practice run. A mixed procedure model (mixed model ANOVA) in SAS® 9.2 was used to determine the significance of these variables in relation to subject speed estimates, as there were both between and within subject variables analyzed. It was found that subject gender, roadway orientation, feedback training, and the type of judgment strategy all significantly affect speed perception. By using curved roadways, feedback training, and speed judgment strategies including road lines, speed limit experience, and feedback training, speed perception in a driving simulator was found to be significantly improved.
Resumo:
The purpose of this study is to understand driving habits of college students. The study demonstrates potential inappropriate behaviors.
Resumo:
It is unknown whether transforming growth factor beta1 (TGF-beta1) signaling uniformly participates in fibrogenic chronic liver diseases, irrespective of the underlying origin, or if other cytokines such as interleukin (IL)-13 share in fibrogenesis (e.g., due to regulatory effects on type I pro-collagen expression). TGF-beta1 signaling events were scored in 396 liver tissue samples from patients with diverse chronic liver diseases, including hepatitis B virus (HBV), hepatitis C virus (HCV), Schistosoma japonicum infection, and steatosis/steatohepatitis. Phospho-Smad2 staining correlated significantly with fibrotic stage in patients with HBV infection (n = 112, P < 0.001) and steatosis/steatohepatitis (n = 120, P < 0.01), but not in patients with HCV infection (n = 77, P > 0.05). In tissue with HBx protein expression, phospho-Smad2 was detectable, suggesting a functional link between viral protein expression and TGF-beta1 signaling. For IL-13, immunostaining correlated with fibrotic stage in patients with HCV infection and steatosis/steatohepatitis. IL-13 protein was more abundant in liver tissue lysates from three HCV patients compared with controls, as were IL-13 serum levels in 68 patients with chronic HCV infection compared with 20 healthy volunteers (72.87 +/- 26.38 versus 45.41 +/- 3.73, P < 0.001). Immunohistochemistry results suggest that IL-13-mediated liver fibrogenesis may take place in the absence of phospho-signal transducer and activator of transcription protein 6 signaling. In a subgroup of patients with advanced liver fibrosis (stage > or =3), neither TGF-beta nor IL-13 signaling was detectable. Conclusion: Depending on the cause of liver damage, a predominance of TGF-beta or IL-13 signaling is found. TGF-beta1 predominance is detected in HBV-related liver fibrogenesis and IL-13 predominance in chronic HCV infection. In some instances, the underlying fibrogenic mediator remains enigmatic.
Resumo:
Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document. [table: see text] Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations.
Resumo:
Java Enterprise Applications (JEAs) are complex systems composed using various technologies that in turn rely on languages other than Java, such as XML or SQL. Given the complexity of these applications, the need to reverse engineer them in order to support further development becomes critical. In this paper we show how it is possible to split a system into layers and how is possible to interpret the distance between application elements in order to support the refactoring of JEAs. The purpose of this paper is to explore ways to provide suggestions about the refactoring operations to perform on the code by evaluating the distance between layers and elements belonging those layers. We split JEAs into layers by considering the kinds and the purposes of the elements composing the application. We measure distance between elements by using the notion of the shortest path in a graph. Also we present how to enrich the interpretation of the distance value with enterprise pattern detection in order to refine the suggestion about modifications to perform on the code.
Resumo:
INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.