933 resultados para Atmospheric electrical discharges


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4◦C), possibly linked to changes in the jet stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of non-stoichiometric sulfides Ga1−xGexV4S8−δ (0≤x≤1; δ≤0.23) has been synthesized at high temperatures by heating stoichiometric mixtures of the elements in sealed quartz tubes. The samples have been characterized by powder X-ray diffraction, SQUID magnetometry and electrical transport-property measurements. Structural analysis reveals that a solid solution is formed throughout this composition range, whilst thermogravimetric data reveal sulfur deficiency of up to 2.9% in the quaternary phases. Magnetic measurements suggest that the ferromagnetic behavior of the end-member phase GaV4S8 is retained at x≤0.7; samples in this composition range showing a marked increase in magnetization at low temperatures. By contrast Ga0.25Ge0.75V4S8−δ appears to undergo antiferromagnetic ordering at ca. 15 K. All materials with x≠1 are n-type semiconductors whose resistivity falls by almost six orders of magnitude with decreasing Ga content, whilst the end-member phase GeV4S8−δ is a p-type semiconductor. The results demonstrate that the physical properties are determined principally by the degree of electron filling of narrow-band states arising from intracluster V–V interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The letters published in the ‘Focus issue on high energy particles and atmospheric processes’ serve to broaden the discussion about the influence of high energy particles on the atmosphere beyond their possible effects on clouds and climate. These letters link climate and meteorological processes with atmospheric electricity, atmospheric chemistry, high energy physics and aerosol science from the smallest molecular cluster ions through to liquid droplets. Progress in such a disparate and complex topic is very likely to benefit from continued interdisciplinary interactions between traditionally distinct science areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab-ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In our model, cloud-radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-fourth of the total global-mean surface warming. The effect of clouds on circulation results mainly from the SW cloud-radiative changes, which strongly enhance the Equator-to-pole temperature gradient at all levels in the troposphere, favoring stronger and poleward-shifted midlatitude eddies. By contrast, quadrupling CO2 while holding the clouds fixed causes strong polar amplification and weakened midlatitude baroclinicity at lower levels, yielding only a small poleward expansion of the circulation. Our results show that (a) the atmospheric circulation responds sensitively to cloud-driven changes in meridional and vertical temperature distribution, and (b) the spatial structure of cloud feedbacks likely plays a dominant role in the circulation response to greenhouse gas forcing. While the magnitude and spatial structure of the cloud feedback are expected to be highly model-dependent, an analysis of 4xCO2 simulations of CMIP5 models shows that the SW cloud feedback likely forces a poleward expansion of the tropospheric circulation in most climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric moisture characteristics associated with the heaviest 1% of daily rainfall events affecting regions of the British Isles are analysed over the period 1997–2008. A blended satellite/rain-gauge data set (GPCP-1DD) and regionally averaged daily rain-gauge observations (HadUKP) are combined with the ERA Interim reanalysis. These are compared with simulations from the HadGEM2-A climate model which applied observed sea surface temperature and realistic radiative forcings. Median extreme daily rainfall across the identified events and locations is larger for GPCP (32 mm day−1) than HadUKP and the simulations (∼25 mm day−1). The heaviest observed and simulated daily rainfall events are associated with increased specific humidity and horizontal transport of moisture (median 850 hPa specific humidity of ∼6 g kg−1 and vapour transport of ∼150 g kg−1 m s−1 for both observed and simulated events). Extreme daily rainfall events are less common during spring and summer across much of the British Isles, but in the south east region, they contribute up to 60% of the total number of distinct extreme daily rainfall events during these months. Compared to winter events, the summer events over south east Britain are associated with a greater magnitude and more southerly location of moisture maxima and less spatially extensive regions of enhanced moisture transport. This contrasting dependence of extreme daily rainfall on moisture characteristics implies a range of driving mechanisms that depend upon location and season. Higher spatial and temporal resolution data are required to explore these processes further, which is vital in assessing future projected changes in rainfall and associated flooding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost, and hence can inform prioritization of model development and observations deployment. Here, we characterize how internal oceanic and surface atmospheric heat fluxes contribute to IFU of Arctic sea ice and upper ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. We find that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures, and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind-driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. We conclude that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.