974 resultados para Atmospheric circulation
Resumo:
Comparison between past changes in pollen assemblages and stable isotope ratios (deuterium and carbon) analyzed in the same peat core from Tierra del Fuego at latitude 55°S permitted identification of the relative contribution of precipitation versus temperature responsible for the respective change. Major steps in the sequence of paleoenvironmental changes, such as at 12700, 9000, 5000, and 4000 years ago are apparently related only to increase in precipitation, reflecting the latitudinal location and intensity of the westerly storm tracks. On the other hand, high paleoenvironmental variability, which is characteristic for the late-glacial and the latest Holocene, is related to temperature variability, which affects the relative moisture content. Comparison with other paleoenvironmental records suggests that the late-glacial temperature variability is probably related to variability in the extent of Antarctic sea-ice, which in turn appears to be related to the intensity of Atlantic deep-water circulation. Temperature variability during the latest Holocene, on the other hand, is probably related to the dynamics of the El Niño/Southern Oscillation.
Resumo:
Annual radiolarian flux (1954-1986) extrapolated from varved Santa Barbara Basin sediments was compared to instrumental data to examine the effect of interannual climate variability. Paleo-reconstructions over large geographic areas or 10^3 years and longer typically rely on changes in species composition to signal environment or climate shifts. In the relatively short period studied, climate fluctuations were insufficient to significantly alter the assemblage, but there was considerable variability in the total flux of radiolarians. This variability, greatest on 5- to 25-year time scales, appears to be linked to regional climate variability. Total flux correlates to regional California sea surface temperature and the composite of sea level pressure over the Northern Hemisphere for years of high radiolarian flux resembles positive PNA circulation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state-of-the-art coupled ocean-atmosphere general circulation model, which was integrated for 120 years.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Large-scale changes in the growth and decay of land plants can be deduced from trends in the concentration of atmospherics [sic] carbon dioxide, after removing signals in the recorded data caused by oceanic and industrial disturbances to the concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Catch of coho salmon off the coast of Washington and Oregon since 1925 appears to be related to large-scale events in the atmosphere, which in turn affect ocean currents and coastal upwelling intensities in the northeastern Pacific. At least two time scales of variations can be identified. The first is that of the El Nino/Southern Oscillation phenomenon giving rise to an irregular cycle of between 3 to 7 years. ... The second time scale of variation seems to have a periodicity of about 20 years, although this is based on a limited dataset. ... This paper endeavors to describe how, if real, these atmospheric/oceanic effects are integrated and might affect the salmon catch. The possibility must also be considered that the atmospheric events are symbiotically related to the oceanic events and, further, that both may be enmeshed in even longer-term variability of climate.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two driving parameters to bound terrestrial carbon sequestration associated with an increase in carbon dioxide concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A varve chronology with annual resolution (AD 1117-1992) has been developed recently for Santa Barbara Basin. Varve thickness and water content show an exponential trend consistent with expected patterns in the presence of sediment compaction over time. Annual varve thickness was decomposed into orthogonal components using singular spectrum analysis (SSA) to identify and retrieve inter-decadal oscillations. ... This suggests a connection with global-scale decadal cycles identified in the subtropical Pacific gyre circulation and, possibly, with solar-driven phenomena. The near-1600 AD event coincides with (a) a similarly sudden change of state in nearby Santa Monica Basin that triggered the onset of anoxic conditions and the preservation of laminated sediments, (b) an extreme drought over the American Southwest, (c) a transformation of the age structure in a number of forest populations throughout Arizona and New Mexico. Total organic carbon burial flux in Santa Barbara Basin varves also shows a marked change after AD 1600. A possible climatic link is proposed that involves pathways for moisture transport in the Southwest at decadal and longer time scales.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Analyses of the modern summer synoptic climatology of Beringia illustrate that the region cannot be treated as a homogenous climatic unit as a result of different circulation controls that operate over the region. GCM (general circulation model) simulations and information from the modern synoptic climatology were used to infer the summer paleosynoptic climatology of the region since the last glacial maximum. ... Variations in these climatic controls offer important implications in assessing the vegetation histories of western Beringia versus eastern Beringia.
Resumo:
The present studies are aimed to achieve a high survival rate of carp spawn to fry stage under Air Lift Water Circulation system at high stocking density. Three experiments using Labeo rohita and Cirrhinus mrigala were conducted in one cement tank of 50 sq.m. area. The results showed a survival rate ranging from 90.5 to 95.2% at stocking density of 20 to 25 million/ha. By this technique it is possible to rear high number of spawn in limited area with high rate of survival up to fry stage.
Resumo:
These simulations are focused on the sensitivity of the barotropic ocean non-linear model to the various open boundary conditions (OBCs). Different OBCs from gradient to radiation condition are examined to determine the best result and help to choose the most appropriate OBCs. Since the interior points are changing with time both implicit and explicit forms are applied. The simulations showed that the interior flow is sensitive to changes in the OBCs and the results are highly dependent on the bathymetry of the area. When a constant depth (100m) is used, the circulation pattern with all OBCs is same. The best boundary conditions are Orlanski Radiation and its modified form. These boundary conditions produce identical adjustment in velocity and are determined to be satisfactory for both constant depth and actual bathymetry.
Resumo:
The water circulation of the Egyptian Mediterranean waters was computed during winter and summer seasons using the dynamic method. The reference level was set at the 1000db surface. The results showed that the surface circulation is dominated by the Atlantic water inflow along the North African coast and by two major gyres, the Mersa Matruth anticyclonic gyre and El-Arish cyclonic gyre. The results showed a seasonal reversal of El-Arish gyre, being cyclonic in winter and anticyclonic in summer. El-Arish gyre had not been previously measured. The geostrophic current velocity at the edges of the Mersa Matruth gyre varied between 12.5 and 29.1cm/sec in winter and between 6.5 and 13.1cm/sec in summer. The current velocity reached its maximum values (>40cm/sec) at El-Arish gyre. The current velocity at the two gyres decreased with increasing depth. The North African Current affects the surface waters down to a depth of 100m, and that its mean velocity varies between 6 and 38cm/sec.
Resumo:
A pin-on-disc apparatus has been used to obtain continuous simultaneous measurements of the wear and friction (sliding force) behaviour of metals on bonded silicon carbide abrasive paper under conditions of controlled humidity. Iron, mild steel, and copper exhibit qualitatively similar wear behaviour; the wear rate decreases progressively with the number of passes over the same track. In contrast, the wear rate of titanium remains constant. Variation in atmospheric humidity has little effect on the wear rates of copper or titanium, although a slight effect was found in mild steel and iron. Refs.
Resumo:
A pin-on-disc apparatus has been used to investigate the wear and friction (sliding force) behavior of metals on bonded silicon carbide and alumina papers under conditions of controlled atmospheric composition. The wear rates of both commercial purity titanium and the alloy Ti-6%Al-4%V tested in air were found to remain constant with time, in contrast with the behavior of other metals tested under similar conditions, which exhibited a progressive decrease in wear rate with increasing number of passes along the same track. It is proposed that the concentration of interstitial nitrogen and oxygen in the worn metal surface, which largely determines its mechanical properties, strongly influences both the ductility of the abraded material and the force of adhesion between the metal and the abrasive particles. Parallels are drawn between abrasive wear and machining to illustrate the importance of oxygen at the interface between workpiece and tool surfaces.
Resumo:
From 1977 to 1980, several research cruises were carried out in the coastal waters of Mozambique to collect oceanographic data. The distribution of hydrographic and bathythermograph stations is given. The water masses and circulation were mapped and wind data gathered.