916 resultados para Asymptomatic malaria
Resumo:
Mode of access: Internet.
Resumo:
Vol. 2: Printed for E. Rainford.
Resumo:
On verso of t.p.: University of Manchester publications, no. XLIII.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.
Resumo:
Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.
Resumo:
The incidence and range of endemic malaria caused by Plasmodium vivax has expanded during the past 30 years. This parasite forms hypnozoites in the liver, creating a persistent reservoir of infection. Primaquine (PQ), introduced 50 years ago, is the only drug available to eliminate hypnozoites. However, lengthy treatment courses and follow-up periods are not conducive to assessing the effectiveness of this drug in preventing relapses. Resistance to standard therapy could be widespread. Studies are urgently needed to gauge this problem and to determine the safety, tolerability and efficacy of shorter courses and higher doses of PQ.
Resumo:
This study sought the ability of strain rate imaging to detect subclinical left ventricular dysfunction, as evidenced by reduced contractile reserve (CR) in 32 asymptomatic patients with isolated severe mitral regurgitation. Compared with CR- patients (n = 10), CR+ patients (n = 22) had significantly higher end-systolic strain and peak systolic strain rate, but these parameters were not significantly different between CR+ patients and matched normal controls. (C) 2004 by Excerpta Medica, Inc.
Resumo:
Background The degree of volume depletion in severe malaria is currently unknown, although knowledge of fluid compartment volumes can guide therapy. To assist management of severely ill children, and to test the hypothesis that volume changes in fluid compartments reflect disease severity, we measured body compartment volumes in Gabonese children with malaria. Methods and Findings Total body water volume (TBW) and extracellular water volume (ECW) were estimated in children with severe or moderate malaria and in convalescence by tracer dilution with heavy water and bromide, respectively. Intracellular water volume (ICW) was derived from these parameters. Bioelectrical impedance analysis estimates of TBW and ECW were calibrated and bioelectrical impedance analysis measurements were taken daily against dilution methods, until discharge. Sixteen children had severe and 19 moderate malaria. Severe childhood malaria was associated with depletion of TBW (mean [SD] of 37 [33] ml/kg, or 6.7% [6.0%]) relative to measurement at discharge. This is defined as mild dehydration in other conditions. ECW measurements were normal on admission in children with severe malaria and did not rise in the first few days of admission. Volumes in different compartments (TBW, ECW, and ICW) were not related to hyperlactataemia or other clinical and laboratory markers of disease severity. Moderate malaria was not associated with a depletion of TBW. Conclusions Significant hypovolaemia does not exacerbate complications of severe or moderate malaria. As rapid rehydration of children with malaria may have risks, we suggest that fluid replacement regimens should aim to correct fluid losses over 12-24 h.
Resumo:
Malaria control strategies are more likely to be successful if groups at high risk can be accurately predicted. Given that mosquitoes have an obligate aquatic phase we were interested in determining how vector larval abundance relates to the spatial distribution of human malaria infection. We examined the relationship between malaria parasite prevalence and distance from vector larval habitat, and vector larval abundance and distance from human habitation, in separate studies in rural, low-endemic areas of the Philippines. Parasite prevalence among symptomatic patients was significantly higher among those living in proximity ( less than or equal to 50 m) to potential larval habitats of the major vector, Anopheles flavirostris (adjusted odds ratio [AOR] 2.64, P = 0.02 and AOR 3.43, P = 0.04). A larval survey of A. flavirostris revealed a higher density of early and late instars near human habitation (adjusted P < 0.05). The results suggest that larvae are associated with human habitation, thereby reinforcing malaria risk in people living close to larval habitats. This has implications for understanding the interaction between vectors, hosts, and parasites, and the potential for success of localized malaria control measures.