887 resultados para Ascencion Island


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to maintain pond-breeding amphibian species richness, it is important to understand how both natural and anthropogenic disturbances affect species assemblages and individual species distributions both at the scale of individual ponds and at a larger landscape scale. The goal of this project was to investigate what characteristics of ponds and the surrounding wetland landscape were most effective in predicting pond-breeding species richness and the individual occurrence of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana) and pickerel frog (Rana palustris) breeding sites in a beaver-modified landscape and how this landscape has changed over time. The wetland landscape of Acadia National Park was historically modified by the natural disturbance cycles of beaver (Castor cazadensis), and since their reintroduction to the island in 1921, beaver have played a large role in creating and maintaining palustrine wetlands. In 2000 and 2001, I studied pond-breeding amphibian assemblages at 71 palustrine wetlands in Acadia National Park, Mount Desert Island, Maine. I determined breeding presence of 7 amphibian species and quantified 15 variables describing local pond conditions and characteristics of the wetland landscape. I developed a priori models to predict sites with high amphibian species and used model selection with Akaike's Information Criterion (AIC) to identify important variables. Single species models were also developed to predict wood frog, bullfrog and pickerel frogs breeding presence. The variables for wetland connectivity by stream corridors and the presence of beaver disturbance were the most effective variables to predict sites with high amphibian richness. Wood frog breeding was best predicted by local scale variables describing temporary, fishless wetlands and the absence of active beaver disturbance. Abandoned beaver sites provided wood frog breeding habitat (70%) in a similar proportion to that found in non beaver-influenced sites (79%). In contrast, bullfrog breeding presence was limited to active beaver wetlands with fish and permanent water, and 80% of breeding sites were large (≥2ha in size). Pickerel frog breeding site selection was predicted best by the connectivity of sites in the landscape by stream corridors. Models including the presence of beaver disturbance, greater wetland perimeter and greater depth were included in the confidence set of pickerel frog models but showed considerably less support. Analysis of historic aerial photographs showed an 89% increase in the total number of ponded wetlands available in the landscape between the years of 1944 and 1997. Beaver colonization generally converted forested wetlands and riparian areas to open water and emergent wetlands. Temporal colonization of beaver wetlands favored large sites low in the watersheds and sites that were impounded later were generally smaller, higher in the watershed, and more likely to be abandoned. These results suggest that beaver have not only increased the number of available breeding sites in the landscape for pond-breeding amphibians, but the resulting mosaic of active and abandoned beaver wetlands also provides suitable breeding habitat for species with differing habitat requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pine Island, now owned by the University of Connecticut, has a rich and colorful history. Just off the Avery Point campus, the island has been home to a fertilizer factory, then a playground, and now a study site for UConn students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A. G.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solomon Small

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes Farm and Weather Summary and Research Farm Projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.