973 resultados para Approximations
Resumo:
The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7].
Resumo:
Global data-flow analysis of (constraint) logic programs, which is generally based on abstract interpretation [7], is reaching a comparatively high level of maturity. A natural question is whether it is time for its routine incorporation in standard compilers, something which, beyond a few experimental systems, has not happened to date. Such incorporation arguably makes good sense only if: • the range of applications of global analysis is large enough to justify the additional complication in the compiler, and • global analysis technology can deal with all the features of "practical" languages (e.g., the ISO-Prolog built-ins) and "scales up" for large programs. We present a tutorial overview of a number of concepts and techniques directly related to the issues above, with special emphasis on the first one. In particular, we concéntrate on novel uses of global analysis during program development and debugging, rather than on the more traditional application área of program optimization. The idea of using abstract interpretation for validation and diagnosis has been studied in the context of imperative programming [2] and also of logic programming. The latter work includes issues such as using approximations to reduce the burden posed on programmers by declarative debuggers [6, 3] and automatically generating and checking assertions [4, 5] (which includes the more traditional type checking of strongly typed languages, such as Gódel or Mercury [1, 8, 9]) We also review some solutions for scalability including modular analysis, incremental analysis, and widening. Finally, we discuss solutions for dealing with meta-predicates, side-effects, delay declarations, constraints, dynamic predicates, and other such features which may appear in practical languages. In the discussion we will draw both from the literature and from our experience and that of others in the development and use of the CIAO system analyzer. In order to emphasize the practical aspects of the solutions discussed, the presentation of several concepts will be illustrated by examples run on the CIAO system, which makes extensive use of global analysis and assertions.
Resumo:
El retroceso de las costas acantiladas es un fenómeno muy extendido sobre los litorales rocosos expuestos a la incidencia combinada de los procesos marinos y meteorológicos que se dan en la franja costera. Este fenómeno se revela violentamente como movimientos gravitacionales del terreno esporádicos, pudiendo causar pérdidas materiales y/o humanas. Aunque el conocimiento de estos riesgos de erosión resulta de vital importancia para la correcta gestión de la costa, el desarrollo de modelos predictivos se encuentra limitado desde el punto de vista geomorfológico debido a la complejidad e interacción de los procesos de desarrollo espacio-temporal que tienen lugar en la zona costera. Los modelos de predicción publicados son escasos y con importantes inconvenientes: a) extrapolación, extienden la información de registros históricos; b) empíricos, sobre registros históricos estudian la respuesta al cambio de un parámetro; c) estocásticos, determinan la cadencia y magnitud de los eventos futuros extrapolando las distribuciones de probabilidad extraídas de catálogos históricos; d) proceso-respuesta, de estabilidad y propagación del error inexplorada; e) en Ecuaciones en Derivadas Parciales, computacionalmente costosos y poco exactos. La primera parte de esta tesis detalla las principales características de los modelos más recientes de cada tipo y, para los más habitualmente utilizados, se indican sus rangos de aplicación, ventajas e inconvenientes. Finalmente como síntesis de los procesos más relevantes que contemplan los modelos revisados, se presenta un diagrama conceptual de la recesión costera, donde se recogen los procesos más influyentes que deben ser tenidos en cuenta, a la hora de utilizar o crear un modelo de recesión costera con el objetivo de evaluar la peligrosidad (tiempo/frecuencia) del fenómeno a medio-corto plazo. En esta tesis se desarrolla un modelo de proceso-respuesta de retroceso de acantilados costeros que incorpora el comportamiento geomecánico de materiales cuya resistencia a compresión no supere los 5 MPa. El modelo simula la evolución espaciotemporal de un perfil-2D del acantilado que puede estar formado por materiales heterogéneos. Para ello, se acoplan la dinámica marina: nivel medio del mar, cambios en el nivel medio del lago, mareas y oleaje; con la evolución del terreno: erosión, desprendimiento rocoso y formación de talud de derrubios. El modelo en sus diferentes variantes es capaz de incluir el análisis de la estabilidad geomecánica de los materiales, el efecto de los derrubios presentes al pie del acantilado, el efecto del agua subterránea, la playa, el run-up, cambios en el nivel medio del mar o cambios (estacionales o interanuales) en el nivel medio de la masa de agua (lagos). Se ha estudiado el error de discretización del modelo y su propagación en el tiempo a partir de las soluciones exactas para los dos primeros periodos de marea para diferentes aproximaciones numéricas tanto en tiempo como en espacio. Los resultados obtenidos han permitido justificar las elecciones que minimizan el error y los métodos de aproximación más adecuados para su posterior uso en la modelización. El modelo ha sido validado frente a datos reales en la costa de Holderness, Yorkshire, Reino Unido; y en la costa norte del lago Erie, Ontario, Canadá. Los resultados obtenidos presentan un importante avance en los modelos de recesión costera, especialmente en su relación con las condiciones geomecánicas del medio, la influencia del agua subterránea, la verticalización de los perfiles rocosos y su respuesta ante condiciones variables producidas por el cambio climático (por ejemplo, nivel medio del mar, cambios en los niveles de lago, etc.). The recession of coastal cliffs is a widespread phenomenon on the rocky shores that are exposed to the combined incidence of marine and meteorological processes that occur in the shoreline. This phenomenon is revealed violently and occasionally, as gravitational movements of the ground and can cause material or human losses. Although knowledge of the risks of erosion is vital for the proper management of the coast, the development of cliff erosion predictive models is limited by the complex interactions between environmental processes and material properties over a range of temporal and spatial scales. Published prediction models are scarce and present important drawbacks: extrapolation, that extend historical records to the future; empirical, that based on historical records studies the system response against the change in one parameter; stochastic, that represent of cliff behaviour based on assumptions regarding the magnitude and frequency of events in a probabilistic framework based on historical records; process-response, stability and error propagation unexplored; PDE´s, highly computationally expensive and not very accurate. The first part of this thesis describes the main features of the latest models of each type and, for the most commonly used, their ranges of application, advantages and disadvantages are given. Finally as a synthesis of the most relevant processes that include the revised models, a conceptual diagram of coastal recession is presented. This conceptual model includes the most influential processes that must be taken into account when using or creating a model of coastal recession to evaluate the dangerousness (time/frequency) of the phenomenon to medium-short term. A new process-response coastal recession model developed in this thesis has been designed to incorporate the behavioural and mechanical characteristics of coastal cliffs which are composed of with materials whose compressive strength is less than 5 MPa. The model simulates the spatial and temporal evolution of a cliff-2D profile that can consist of heterogeneous materials. To do so, marine dynamics: mean sea level, waves, tides, lake seasonal changes; is coupled with the evolution of land recession: erosion, cliff face failure and associated protective colluvial wedge. The model in its different variants can include analysis of material geomechanical stability, the effect of debris present at the cliff foot, groundwater effects, beach and run-up effects, changes in the mean sea level or changes (seasonal or inter-annual) in the mean lake level. Computational implementation and study of different numerical resolution techniques, in both time and space approximations, and the produced errors are exposed and analysed for the first two tidal periods. The results obtained in the errors analysis allow us to operate the model with a configuration that minimizes the error of the approximation methods. The model is validated through profile evolution assessment at various locations of coastline retreat on the Holderness Coast, Yorkshire, UK and on the north coast of Lake Erie, Ontario, Canada. The results represent an important stepforward in linking material properties to the processes of cliff recession, in considering the effect of groundwater charge and the slope oversteeping and their response to changing conditions caused by climate change (i.e. sea level, changes in lakes levels, etc.).
Resumo:
Compile-time program analysis techniques can be applied to Web service orchestrations to prove or check various properties. In particular, service orchestrations can be subjected to resource analysis, in which safe approximations of upper and lower resource usage bounds are deduced. A uniform analysis can be simultaneously performed for different generalized resources that can be directiy correlated with cost- and performance-related quality attributes, such as invocations of partners, network traffic, number of activities, iterations, and data accesses. The resulting safe upper and lower bounds do not depend on probabilistic assumptions, and are expressed as functions of size or length of data components from an initiating message, using a finegrained structured data model that corresponds to the XML-style of information structuring. The analysis is performed by transforming a BPEL-like representation of an orchestration into an equivalent program in another programming language for which the appropriate analysis tools already exist.
Resumo:
Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor.
Resumo:
A method is presented to construct computationally efficient reduced-order models (ROMs) of three-dimensional aerodynamic flows around commercial aircraft components. The method is based on the proper orthogonal decomposition (POD) of a set of steady snapshots, which are calculated using an industrial solver based on some Reynolds averaged Navier-Stokes (RANS) equations. The POD-mode amplitudes are calculated by minimizing a residual defined from the Euler equations, even though the snapshots themselves are calculated from viscous equations. This makes the ROM independent of the peculiarities of the solver used to calculate the snapshots. Also, both the POD modes and the residual are calculated using points in the computational mesh that are concentrated in a close vicinity of the aircraft, which constitute a much smaller number than the total number of mesh points. Despite these simplifications, the method provides quite good approximations of the flow variables distributions in the whole computational domain, including the boundary layer attached to the aircraft surface and the wake. Thus, the method is both robust and computationally efficient, which is checked considering the aerodynamic flow around a horizontal tail plane, in the transonic range 0.4?Mach number?0.8, ?3°?angle of attack?3°.
Resumo:
Generation of a complete damage energy and dpa cross section library up to 150 MeVbased on JEFF- 3.1.1 and suitable approximations (UPM) Postprocessing of photonuclear libraries (by CCFE) and thermal scattering tables (by UPM) at the backend of the calculational system (CCFE/UPM)
Resumo:
This paper is concerned with the low dimensional structure of optimal streaks in the Blasius boundary layer. Optimal streaks are well known to exhibit an approximate self-similarity, namely the streamwise velocity re-scaled with their maximum remains almost independent of both the spanwise wavenumber and the streamwise coordinate. However, the reason of this self-similar behavior is still unexplained as well as unexploited. After revisiting the structure of the streaks near the leading edge singularity, two additional approximately self-similar relations involving the velocity components and their wall normal derivatives are identified. Based on these properties, we derive a low dimensional model with two degrees of freedom. The comparison with the results obtained from the linearized boundary layer equations shows that this model is consistent and provide good approximations.
Resumo:
Sensor network deployments have become a primary source of big data about the real world that surrounds us, measuring a wide range of physical properties in real time. With such large amounts of heterogeneous data, a key challenge is to describe and annotate sensor data with high-level metadata, using and extending models, for instance with ontologies. However, to automate this task there is a need for enriching the sensor metadata using the actual observed measurements and extracting useful meta-information from them. This paper proposes a novel approach of characterization and extraction of semantic metadata through the analysis of sensor data raw observations. This approach consists in using approximations to represent the raw sensor measurements, based on distributions of the observation slopes, building a classi?cation scheme to automatically infer sensor metadata like the type of observed property, integrating the semantic analysis results with existing sensor networks metadata.
Resumo:
Conditions leading to a maximum range for a small, round projectile, fired by hand, are discussed taking into account air drag and the dependence of the initial speed on the mass launched. Both the optimal angle of release for given projectile and initial speed, and the optimal radius for given density (i.e., among a bed of pebbles) are determined; an increase on the height of release is found to always decrease the angle and increase the radius. The influence of the projectile mass on the optimal manner of launching is considered. The validity of the approximations used in the analysis is discussed. Results from very simple measurements show good agreement with theory.
Resumo:
A recent study by the authors points to Charged Particle Drag (CPD) as a contributor to revisit in the LAGEOS non-gravitational perturbations problem. Such perturbations must account for dynamical contributions in the order of pms−2 . The simulated effect takes into account: (i) spatial and temporal variations of the plasmatic parameters (temperature and concentration of the species), (ii) spacecraft potential variations caused by both the eclipse passages and variations in the parameters mentioned above, and (iii) solar and geomagnetic conditions. Furthermore, recent theoretical improvements concerning scattering drag overcome previous limitations allowing for a complete formulation of this effect. For each satellite the lifetime CPD instantaneous acceleration is computed. The plasmatic parameters have been obtained fromthe Sheffield Coupled Thermosphere-Ionosphere-Plasmasphere (SCTIP) semi-empirical model (up to the polar region), as well as alytical/empirical approximations based on spacecraft measurements for the auroral and polar regions. Results show that maximum amplitudes for LAGEOSI are larger than those for LAGEOS-II: −85 pms−2 and −70 pms−2 respectively. This is due to the almost (magnetically) polar orbit configuration of the first, producing larger combinations of plasmatic parameter values. High solar activity has a huge impact in the resulting LAGEOS accelerations: it yields a perfect modulation of the resulting acceleration with maximum amplitudes up to a factor of 10 when comparing low and high activity periods. On the other hand, the impact of the geomagnetic activity results into a reduction of the effect itself, probably due to a decrease in the hydrogen concentration for high energy input periods. The acceleration results will be used in a refined orbit computation in a subsequent investigation.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
El objetivo de este proyecto de investigación es comparar dos técnicas matemáticas de aproximación polinómica, las aproximaciones según el criterio de mínimos cuadrados y las aproximaciones uniformes (“minimax”). Se describen tanto el mercado actual del cobre, con sus fluctuaciones a lo largo del tiempo, como los distintos modelos matemáticos y programas informáticos disponibles. Como herramienta informática se ha seleccionado Matlab®, cuya biblioteca matemática es muy amplia y de uso muy extendido y cuyo lenguaje de programación es suficientemente potente para desarrollar los programas que se necesiten. Se han obtenido diferentes polinomios de aproximación sobre una muestra (serie histórica) que recoge la variación del precio del cobre en los últimos años. Se ha analizado la serie histórica completa y dos tramos significativos de ella. Los resultados obtenidos incluyen valores de interés para otros proyectos. Abstract The aim of this research project is to compare two mathematical models for estimating polynomial approximation, the approximations according to the criterion of least squares approximations uniform (“Minimax”). Describes both the copper current market, fluctuating over time as different computer programs and mathematical models available. As a modeling tool is selected main Matlab® which math library is the largest and most widely used programming language and which is powerful enough to allow you to develop programs that are needed. We have obtained different approximating polynomials, applying mathematical methods chosen, a sample (historical series) which indicates the fluctuation in copper prices in last years. We analyzed the complete historical series and two significant sections of it. The results include values that we consider relevant to other projects
Resumo:
Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.
Resumo:
Realistic operation of helicopter flight simulators in complex topographies (such as urban environments) requires appropriate prediction of the incoming wind, and this prediction should be made in real time. Unfortunately, the wind topology around complex topographies shows time-dependent, fully nonlinear, turbulent patterns (i.e., wakes) whose simulation cannot be made using computationally inexpensive tools based on corrected potential approximations. Instead, the full Navier-Stokes plus some kind of turbulent modeling is necessary, which is quite computationally expensive. The complete unsteady flow depends on two parameters, namely the velocity and orientation of the free stream flow. The aim of this MSc thesis is to develop a methodology for the real time simulation of these complex flows. For simplicity, the flow around a single building (20 mx20 m cross section and 100 m height) is considered, with free stream velocity in the range 5-25 m/s. Because of the square cross section, the problem shows two reflection symmetries, which allows for restricting the orientations to the range 0° < a. < 45°. The methodology includes an offline preprocess and the online operation. The preprocess consists in three steps: An appropriate, unstructured mesh is selected in which the flow is sim¬ulated using OpenFOAM, and this is done for 33 combinations of 3 free stream intensities and 11 orientations. For each of these, the simulation proceeds for a sufficiently large time as to eliminate transients. This step is quite computationally expensive. Each flow field is post-processed using a combination of proper orthogonal decomposition, fast Fourier transform, and a convenient optimization tool, which identifies the relevant frequencies (namely, both the basic frequencies and their harmonics) and modes in the computational mesh. This combination includes several new ingredients to filter errors out and identify the relevant spatio-temporal patterns. Note that, in principle, the basic frequencies depend on both the intensity and the orientation of the free stream flow. The outcome of this step is a set of modes (vectors containing the three velocity components at all mesh points) for the various Fourier components, intensities, and orientations, which can be organized as a third order tensor. This step is fairly computationally inexpensive. The above mentioned tensor is treated using a combination of truncated high order singular value, decomposition and appropriate one-dimensional interpolation (as in Lorente, Velazquez, Vega, J. Aircraft, 45 (2008) 1779-1788). The outcome is a tensor representation of both the relevant fre¬quencies and the associated Fourier modes for a given pair of values of the free stream flow intensity and orientation. This step is fairly compu¬tationally inexpensive. The online, operation requires just reconstructing the time-dependent flow field from its Fourier representation, which is extremely computationally inex¬pensive. The whole method is quite robust.