937 resultados para Antioxidants
Resumo:
Purpose: This study evaluated the effect of 10% sodium ascorbate (10SA), in gel (10SAg) or aqueous solution (10SAs) formulations, on fracture resistance of endodontically treated tooth submitted to dental bleaching procedures with 15% hydrogen peroxide associated with titanium dioxide (15HP-TiO2) nanoparticles and photoactivated by LED-laser. Material and methods: Forty maxillary premolars were endodontically-treated and embedded in acrylic resin up to the cement-enamel junction. The specimens were divided into four groups (n=10): G1 (negative control): no bleaching, coronal access restored with composite resin; G2 (positive control): three dental bleaching sessions using 15HP-TiO2 and LED-laser photoactivation and restored with composite resin (positive control); G3 (10SAg): similar procedures to G2, but applied 10SA, in gel formulation, for 24 hours before restoration; G4 (10SAs): similar procedures to G3, but applied 10SA, in aqueous solution formulation. The 15HP-TiO2 was applied on buccal and lingual surfaces of the crown tooth and inside the pulp chamber and photoactivated by LED-laser. Between each bleaching session, the teeth were maintained in artificial saliva, at 37oC, for 7 days. In sequence, the teeth were submitted to fracture resistance testing using an eletromechanical machine test. The data was analyzed using Kruskal Wallis test (p = 0.05) Results: There are no differences significant among the groups in relation to fracture resistance of endodontically treated teeth (p>0.05). Conclusions: The use of 10% sodium ascorbate, in gel or aqueous solution formulations, did not interfered on the fracture resistance teeth after dental bleaching using 15HP-TiO2 and LED-laser photoactivation.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2–83.5%, with linoleic acid being the dominant fatty acid (62.4–72.5%), followed by oleic acid (10.8–22.7%) and palmitic acid (9.2–9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.
Resumo:
The objective of this study was to evaluate the phytotoxicity of Solanum aculeatissimum Jacq. leaves ethanolic extract in seeds germination, development and fixation of Lactuca sativa seedlings. The same study also aimed to assess the mitotic index of lettuce roots meristematic cells, quantification of phenols and total flavonoids and triage by mean of phytochemical testing of the main secondary metabolites classes. Bioassays of germination, development of root and hypocotyl were carried out in Petri dishes using achenes of Lactuca sativa L. cv. 'Grand Rapids' (lettuce). Concomitantly, were evaluated the physico-chemical characteristics (pH, osmotic potential and electrical conductivity), mitotic index, quantification of total phenols and flavonoids and determination of phytochemical profile of the treatments extract. The results obtained in the bioassays demonstrate that the ethanol extract of S. aculeatissimuma presents phytotoxic potential in the development of lettuce seedlings, given that the concentration of 20 mg/ml showed greater inhibition (41% of germination). The extract contains significant amounts of antioxidants, total flavonoid and phenols, where the concentration 1000µg/mL showed higher values (86.50%). Furthermore, it was possible to observe the presence of compounds with allelopathic activity in the phytochemical screening test as coumarins, tannins, terpenes, flavonoids and alkaloids. Given the above it is clear that the ethanolic extract of S. aculeatissimum presents allelopathic substances with phytotoxic activity that can affect the germination and development of other plant species in their natural environment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction: skeletal muscles are dynamic tissue that can change their phenotypic characteristics providing a better functional adaptation to different stimuli. L-thyroxine is a hormone produced by the thyroid gland and has been used as an experimental model for stimulation of oxidative stress in skeletal muscle. Coenzyme Q10 (CoQ10) is a fat-soluble provitamin endogenously synthesized and found naturally in foods such red meat, fish, cereals, broccoli and spinach. It has antioxidant properties and potential in the treatment of degenerative and neuromuscular diseases. Objective: to evaluate the protective effect of CoQ10 in the soleus muscle of rats against the oxidative damage caused by L-thyroxine. Methods: the rats were divided in four groups of six animals each: Group 1 (control); Group 2 (coenzyme Q10); Group 3 (L-thyroxine), and Group 4 coenzyme Q10 and L-thyroxine). After euthanasia, blood was collected and serum activity of the enzymes creatine kinase (CK) and aspartate aminotransferase (AST) was analyzed. In the soleus muscle homogenates the factors related to oxidative stress were assessed. Results: CoQ10 protected the soleus muscle against the damage caused by L-thyroxine and favored the maintenance of the antioxidant enzymes glutathione reductase and glutathione peroxidase, the concentration of decreased and oxidized glutathione, and prevented lipid peroxidation. Conclusion: the results indicate that CoQ10 protects rat soleus muscle from oxidative damage caused by L-thyroxine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
While methods to evaluate antioxidant capacity in animals exist, one problem with the models is induction of oxidative stress. It is necessary to promote a great enough challenge to induce measurable alterations to oxidative parameters while ensuring the protocol is compatible with animal welfare. The aim of the present study was to evaluate caged transport as a viable short-term stress that would significantly affect oxidative parameters. Twenty adult Beagle dogs, maintained on the same diet for 60 d prior to the transport, were included in the study. To simulate the stress, the dogs were housed in pairs in transport cages (1·0 m × 1·0 m × 1·5 m), placed on a truck coupled to a trailer and transported for a period of 15 min. Blood collection was performed immediately before and again 3 h after the transportation to evaluate oxidative parameters in blood serum, including thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), sequestration activity of the radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), protein carbonylation (PC), total sulfhydryl groups (SH), alpha-tocopherol (αToc) and retinol (Ret). PC, SH and αToc were not significantly changed in the study; however, TBARS, TAC and DPPH increased, whereas Ret decreased after the transport. Although the lack of a control group of dogs not submitted to transport is a limitation to be considered, we conclude that the transport model is effective in inducing an antioxidant response in dogs and relevant blood parameters show sensitivity to this proposed model.
Resumo:
Isoflurane is a volatile halogenated anesthetic used especially for anesthesia maintenance whereas propofol is a venous anesthetic utilized for anesthesia induction and maintenance, and reportedly an antioxidant. However, there are still controversies related to isoflurane-induced oxidative stress and it remains unanswered whether the antioxidant effects occur in patients under propofol anesthesia.Taking into account the importance of better understanding the role of anesthetics on oxidative stress in anesthetized patients, the present study was designed to evaluate general anesthesia maintained with isoflurane or propofol on antioxidant status in patients who underwent minimally invasive surgeries.We conducted a prospective randomized trial in 30 adult patients without comorbidities who underwent elective minor surgery (septoplasty) lasting at least 2 h admitted to a Brazilian tertiary hospital.The patients were randomly allocated into 2 groups, according to anesthesia maintenance (isoflurane, n = 15 or propofol, n = 15). Peripheral blood samples were drawn before anesthesia (baseline) and 2-h after anesthesia induction.The primary outcomes were to investigate the effect of either isoflurane or propofol anesthesia on aqueous plasma oxidizability and total antioxidant performance (TAP) by fluorometry as well as several individual antioxidants by high-performance liquid chromatography. As secondary outcome, oxidized genetic damage (7,8-dihydro-8-oxoguanine, known as 8-oxo-Gua) was investigated by the comet assay.Both anesthesia techniques (isoflurane or propofol) for a 2-h period resulted in a significant decrease of plasma α-tocopherol, but not other antioxidants including uric acid, carotenoids, and retinol (P > 0.05). Propofol, in contrast to isoflurane anesthesia, significantly increased (P < 0.001) anti-inflammatory/antioxidant plasma γ-tocopherol concentration in patients. Both anesthesia types significantly enhanced hydrophilic antioxidant capacity and TAP, with no significant difference between them, and 8-oxo-Gua remained unchanged during anesthesia in both groups. In addition, both anesthetics showed antioxidant capacity in vitro.This study shows that anesthesia maintained with either propofol or isoflurane increase both hydrophilic and total antioxidant capacity in plasma, but only propofol anesthesia increases plasma γ-tocopherol concentration. Additionally, both types of anesthetics do not lead to oxidative DNA damage in patients without comorbidities undergoing minimally invasive surgery.